Unit 12: Risk Management in a Multi-objective Framework H.P. Nachtnebel

Dept. of Water-Atmosphere-Environment Univ. of Natural Resources and Life Sciences hans_peter.nachtnebel@boku.ac.ct

Structure

- Objectives
- Introduction/background
- Multi-objective approaches (methodology)
- Application
- Summary
- Conclusion

Objectives

- Risk management tries to identify options to reduce the risk
- Secondly: Options are evaluated by a set of criteria
- Choose the options where you have the best result

 Every decision is related to economic, social and environmental objectives

- Every decision is related to economic, social and environmental objectives
- Every decision faces uncertainties

- Every decision is related to economic, social and environmental objectives
- Every decision faces uncertainties
- Origin of uncertainties
 - Data are limited (in time and space)

- Every decision is related to economic, social and environmental objectives
- Every decision faces uncertainties
- Origin of uncertainties
 - Data are limited (in time and space)
 - Data are contaminated by measurement errors

- Every decision is related to economic, social and environmental objectives
- Every decision faces uncertainties
- Origin of uncertainties
 - Data are limited (in time and space)
 - Data are contaminated by measurement errors
 - Models describe only part of reality

- Every decision is related to economic, social and environmental objectives
- Every decision faces uncertainties
- Origin of uncertainties
 - Data are limited (in time and space)
 - Data are contaminated by measurement errors
 - Models describe only part of reality
 - Social preferences are not perfectly known

- Every decision is related to economic, social and environmental objectives
- Every decision faces uncertainties
- Origin of uncertainties
 - Data are limited (in time and space)
 - Data are contaminated by measurement errors
 - Models describe only part of reality
 - Social preferences are not perfectly known
- Therefore we have to trade-off different objectives (outcomes) with uncertanties

Comparison of two uncertain alternatives

e.g A1 (nuclear power plant) and A2 (thermal power plant)

Decision under risk

2 alternatives with uncertain outcomes

Net benefits (k€) and probabilities

	A ₁	A ₂
w ₁ =33%	6 400	4 900
w ₂ =33%	4 100	4 300
w ₃ =33%	2 500	3 600

Which alternative is better?

The decision depends on the perception of risk

mean	4 333	4 266
Max	6 400	4 900
Min	2 500	3 600

Comparing two uncertain outcomes

Possible Decision Criteria

```
Max \{\Sigma w_i NB_{ik}\}
Max \{Max(NB_{ik})\}
Max \{Min (NB_{ik})\}
```

Decision criteria

Bernoulli criterion: choose the one where K₁ is better:

$$K_1 = \max \{K_{1,i}\} = \max \{ \sum w_k A_{ik} \}$$

Decisoin criteria

- Risk friendly decision: given a certain risk probability (with e.g. 33% you will win) choose the alternative with the higher outcome
- $K_2 = Max \{K_{2,i}\} = Max \{Max(NB_{ik} with P>p_{crit})\}$
- $K_2 = 6400 = Max\{K_{2,1} = 6400, K_{2,2} = 4900\}$
- Gambler's attitude

Decision criteria

- Neumann-Morgenstern criterion: try to avoid losses or take a risk averse position
- $K_3 = \max\{K_{3,i}\} = \max\{\min(A_{ik}) \text{ for } w_k > p_0\}$
- Choose A₂ because the worst outcome is 3 600 k€/a which is better than the outcome of A₁
- Is a useful criterion for public investments, safe decision

Some examples

- Quantifying risk is associated with economic losses, human impacts, environmental impacts, social disruptions
- Risk management tries to minimize economic losses, to preserve environmental quality, to reduce social disruptions,.....

Example of objectives and sub-objectives

```
Improve regional and national economy
minimize total losses
(direct and indirect losses, costs of protection measures,..)
```

Reduce disparity among regions
 (income, job opportunities, infrastructure,...)

Example of objectives and Sub-objectives

Preserve/improve environmental conditions preserve/extend aquatic wetlands

(area (ha), natural diversity (index)...)
preserve/improve groundwater quality

(nitrate conc. (mg/l), dissolved iron (mg/l), heavy metals (mg/l), recharge (m3/a)
preserve/stabilise endangered species

(number (#), reproduction rate (%)...)

Example of objectives and sub-objectives

- Minimize human losses(# of fatalities, number of injured people...)
- Improve/preserve living conditions (reduce disruptions of social life, ensure basis supply functions, preserve job opportunities (#/a), recreational opportunities (# people/day).....
- Improve equity within society benefits and adverse project impacts should be balanced within the region

Example of objectives and sub-objectives

Preserve cultural heritage

```
(number of monuments exposed, age, quality, importance and uniqueness of monuments,...)
```

Multi-objective decision making

- Overview of the concepts applied in MCDM
 One decision maker
 quantitative (Compromise Programming) and
 qualitative criteria (ELECTRE I-IV)
- Analysis of pro's and con's
- Applicability

Techniques

- Distance-based techniques
- Outranking techniques (for discrete alternatives only)
- Value- or utility-based techniques
- Graph model
- Alternative Dispute Resolution

Distance based techniques

- Require quantitatively expressed criteria
- Require preferences (weigths and scales)
- Number of alternatives may be infinite (optimisation)
- Yield a full ranking of alternatives
- Might be iteratively applied

Procedure

- Impact table: expresses the consequences of each alternative with respect to each criterion in measureable units
- Efficiency or payoff table transformation of impacts into efficiency measures (scaling)
- Estimation of the overall efficiency ("best solutions")

Impact table

full set of alternatives A

Criteria	A1	A2	A3	Ai	AN
C1 (€)	c11	c12	c13	c1i	c1N
C2	c21	c22	c23	c2i	c2N
C3 (mg/l)	c31	c32	c33	c3i	c3N
Cj	cj1	cj2	cj3	cji	cjN
CJ (ha)	cJ1	cJ2	cJ3	cJi	cJN

Payoff table

The physical outcomes have to be transferred into appreciation values (often the efficiency in reaching an objective is used)

Payoff table

The physical outcomes have to be transferred into appreciation values (often the efficiency in reaching an objective is used)

Sometimes utility and membership functions are used

Efficiency or payoff table

full set of alternatives A

Criteria	<u>A</u>	<u>A</u>	<u>A</u> 3	<u>A</u>	<u>A</u> <u>N</u>
C ₁ (€)	a ₁₁	a ₁₂	a ₁₃	a _{1i}	a _{1N}
C ₂	a ₂₁	a ₂₂	a ₂₃	a _{2i}	a _{2N}
C ₃ (mg/l)	a ₃₁	a ₃₂	a ₃₃	a _{3i}	a_{3N}
C _i	a _{j1}	a _{j2}	a _{j3}	a _{ji}	a _{jN}
C _J (ha)	a _{J1}	a _{J2}	a _{J3}	a _{Ji}	a_{JN}

Distance based techniques

Distance based techniques

Scaled Representation

Distance based techniques

$$d_{i,j} = 1 - a_{i,j}$$

$$L_i(p) = \left[\sum (w_j \cdot d_{i,j}^p) \right]^{1/p}$$

Distance with respect to one criterion

Overall distance L_i the distance of alternative i from ideal point depends on w_i and p

w_j weights p trade-off factor

Outranking techniques

Often, a pairwise comparison of alternatives is performed e.g. A3>A4, A5>A4, A4>A2, A3>A2

In ELECTRE (I) only an incomplete ranking can be achieved In ELECTRE (IV) a complete ranking is achieved

Both approaches require weigths and scales for describing the preferences.

Govindam et al. (2016) https://doi.org/10.1016/j.ejor.2015.07.019

Simple example: 2 alternatives A1 and A2,

3 criteria: C1, C2 and C3

Weights: w1, w2, w3

Scales: s1, s2, s3

	A1	A2	W	S
C1	c11	c12	w1	s1
C2	c21	c22	w2	s2
C3	c31	c32	w3	s3

C1 NPV in (Mio €)

C2 (mg/l) water pollution

C3 (# of created jobs)

Impact table

```
weight
W
  scale
              WS
          A2
       A1
                        Best Worst
               0.5 10 2.0 1.0
C1
       1.5 1.8
      10 20 0.2 10 0 50
C2
           120
                   10
C3
       100
               0.3
                        200
                            0
```

ELECTRE: concordance and discordance

- Concordance expresses the dominance of Ai>Aj
- Discordance expresses the weakness of Ai<Aj</p>

$$CI(i, j) = \frac{\sum_{A_i > A_j} w_k + \frac{1}{2} \sum_{A_i = A_j} w_k}{\sum_{A_i = A_j} w_k}$$

$$DI(i,j) = \underset{k=1,J}{Max} \left\{ \frac{Z_{ki} - Z_{kj}}{Max(Sc)} \right\} for _all _A_j > A_i$$

- Definition of threshold values CI* and DI*
- Identification of alternatives with high CI and low DI

- CI(1,2)=0.2, CI(2,1)=0.8
- \blacksquare DI(1,2)= Max (0.3, 0,1)=0.3
- DI(2,1)=Max(10/50)=0.2
- Finally two matrices CI(,) and DI(,) are obtained
- A threshold level CI* and DI* is introduced (e.g. CI* = 0.75, DI*=0.2 then A2>A1
- The lower CI* and the higher DI* the more alternatives are considered in pairwise comparison

Conclusions

- Numerous methods exist for conflict analysis and resolution
- Multi-objective decision making is a daily problem
- The concepts of multiple objectives is found in many international/national documents
- The major steps are in the problem definition in the impact assessment in knowing about the preferences
- The numerical methods are helpful in improving the understanding of the problem and the exploring the feasible domain

Distance based techniques

Utility based techniques

- Often single attribute utility theory is applied
- If possible, MAUT (Multi-Attribute-Utiliy Theory) should be applied

Utility theory

- Impact matrix
- Transformation of impacts into utilities
- Definition of weigths for each criterion
- Overall utility value UV_i of alternative A_i is

$$UV_i = \sum_j w_j \cdot uv_{ij}$$

1-D and 2-D Utility Functions

