Course Unit 11

Handling Uncertainty H.P. Nachtnebel

Dept. of Water-Atmosphere-Environment Univ. of Natural Resources and Life Sciences hans_peter.nachtnebel@boku.ac.at

Sources of Uncertainty

Data gaps, limited sample size

- Measurement errors
- Stochastic component in nature (climate, hydrology,....)
 Modelling errors (limited scope, simplified equations, unknown boundaries and initial conditions, parameters)
- Changing preferences in our society
- Unknown development of technologies....

How to handle uncertainty and risk?

RESERVOIR

If one of the input variables or the initial state is not precisely known then all the output variables and/or the state are also uncertain

Handling Uncertainties

All the outcomes of a project, the rankings are subjected to uncertainty: they have a range, a pdf

Handling Uncertainties

Sensitivity analysisSimulation

For each variable a pdf is assumed

For each variable a pdf is assumed

BCR

For each variable a pdf is assumed
Hundreds of simulations
A pdf for the efficiency criterion is obtained
Probability

For each variable a pdf is assumed
Hundreds of simulations
A pdf for the efficiency criterion is obtained

Probability

Failure probability Probability that the project will not be economically justified f(BCR)

BCR

Handling Uncertainties

Sensitivity analysis

Simulation: We can estimate the failure probability

$$P_F = \int_0^1 f(x) dx$$
$$P_S = \int_1^\infty f(x) dx = 1 - P_F$$

We could prespecify a certain minimum probability of success.
 E.g. I would accept a project with a 90 % probability of success:
 P_S >0.9

Example: Water Shortage

Objective: reduce the risk

Manage the demand (improve water use efficiency) Manage the supply (increase the supply rate by building/enlarging a reservoir)

Costs C

Storage capacity S

Course unit 11: Handling Uncertainty

H.P. Nachtnebel

Example: Water Shortage

What is the decision criterion ?

 $Min\{R(Q^*) + C(WUE)\}$ $Min\{R(Q^*) + C(S)\}$

What happens after building a levee ?

PDFs and Risk curves

Risc curves

Risc curves

What happens after building a levee ?

PDFs and Risk curves

What happens after building a levee ?

PDFs and Risk curves

Risk curves

Flood probability F(Q) Damage potential D(Q) \bigcirc Prob(Damage>D) Risc curve 1/TDamage potential D(Q)

Course unit 11: Handling Uncertainty

H.P. Nachtnebel

Risk curves

Risk curves

Flood probability F(Q)

Prob(Damage>D)

1/T

Design level X*(T)

Risc curve

Increased damage potential

Damage potential D(Q) H.P. Nachtnebel

Consequences

The expected damages may be larger after flood implementation of flood protection measures
 Land management and development strategies are required

Safety of dams and levees ?

History of dam failures around the world

Dam	Dam	Country	Height	Reservoir	Date	Failure		Deaths
	type		(m)	volume (10 ⁶ m ³)	built	Date	Туре	
Vega de Tera	CMB	Spain	34	7.8	1957	1959	SF	144
Malpasset	CA	France	66	22	1954	1959	FF	421
Vaiont	CA	Italy	265	150	1960	1963	L	2600
Baldwin Hills	Emb	USA	71	1.1	1951	1963	IE	5
Frias	Emb	Argentina	15	0.2	1940	1970	OF	>42
Teton	Emb	USA	93	356	1975	1976	IE	14
Machhu II	Emb	India	26	100	1972	1979	OF	2000
Bagauda	Emb	Nigeria	20	0.7	1970	1988	OF	50
Belci	Emb	Romania	18	13	1962	1991	OF	25
Gouhou	Emb	China	71	3	1989	1993	IE	400
Zeizoun	Emb	Syria	42	71	1996	2002	OF	20
Shakidor	Emb	Pakistan			2003	2005	OF	>135
Situ Gintung	Emb	Indonesia	16	2	1933	2009	IE	100

Dam type: CA = concrete arch, CMB = concrete and masonry buttress, Emb = embankment. **Type of failure**: IE = internal erosion, FF = foundation failure, OF = overtopping during flood, SF = structural failure on first filling, L = landslide into the reservoir causing overtopping

Comparing two Uncertain Alternatives

Comparison of different risk curves

Comparison of two hazards with quite different consequences A1 very low probability of occurrence but extreme consequences A2 high probability of occurrence but lower consequences E.g. A1 nuclear power station and A2 thermal power station

Cumulative probability

A1 has a low mean value but is highly skewed A2 has a higher mean but an upper limit

Comparing two Uncertain Alternatives

The mean value of A1 < A2</p>

- There is high probability that the damages vom A1 are smaller than from A2
- But it may happen that the damages from A1 are >>> than from A2
- Being risk adverse select A2

Comparing risks

Two alternatives, A1 and A2, exhibit annual net benefits (k€) with a certain probability. The outcomes are A_{ik}
 Which one should be chosen ?

$$\begin{array}{ccccc} & A_1 & A_2 \\ w_1 = 33\% & 6\ 400 & 4\ 900 \\ w_2 = 33\% & 4\ 100 & 4\ 300 \\ w_3 = 33\% & 2\ 500 & 3\ 600 \end{array}$$

Comparing two Uncertain Outcomes

Possible Decision Criteria
 Max {Σ w_i NB_{ik}}
 Max {Max(NB_{ik})}
 Max {Min (NB_{ik})}

Bernoulli Criterion Gambler Criterion Neumann-Morgenstern Criterion

Decision techniques

Bernoulli criterion: choose the one where K₁ is better:

 $K_1 = \max \{K_{1,i}\} = \max \{ \Sigma W_k A_{ik} \}$

K_{1,1} = 4 333 k€/a K_{1,2} = 4 266 k€/a

Decision techniques

 Neumann-Morgenstern criterion: try to avoid losses or take a risk averse position

• $K_3 = \max\{K_{3,i}\} = \max\{\min(A_{ik}) \text{ for } w_k > p_0\}$

Choose A₂ because the worst outcome is 3 600 k€/a which is better than the outcome of A₁
 Is a useful criterion for public investments, safe decision

Perception of risk

Summary and Conclusions

Uncertainty is essential in DM
All our decisions are subjected to uncertainty
Several performance indicators were defined failure rate, reliability, risk
Several strategies for risk management were discussed Max average Min losses (risk averse) Max max (risk prone)

