Systems Approach to Water Resources Management
H.P. Nachtnebel

Abstract Water resources management is mostly executed in a complex environment
consisting of several subsystems related to water, economy, ecology and legislative as
well as administrative structure. The formulation of a water resources problem within a
systems analytical approach requires a set of definitions which are given in this paper.

In general five elements including input, state, output, state transition and objective
function are necessary to describe a system. Often it is grouped into desirable, undesirable
output. This requires a set of predefined goals, objectives to evaluate the output with
respect to its degree of goal attainment. Finally, some examples are given to demonstrate
the methodology and some basic mathematical expressions are elaborated to enable the
formal description of a system.

1. Introduction and Problem Definition

The formulation of a water resources decision/management problem within a system
analytical approach requires a set of definitions. Here one of the possible methods, the
state space approach is described briefly including the five elements such as input, state,
output, state transition and output function. In order to evaluate the output, preferences
have to be specified either by identifying a goal point or an aspiration level or
requirements which should be met in any case. The terms goal, attributes, criteria and
constraints are described. Definitions of decision space and objective space are given.

Since the early sixties (Maass et al., 1962) serious attempts have been made to redefine
the water resources development problems within the framework of systems analytical
concepts. The analysis of the problems within this context implies the introduction of new
terms and terminology as well as requiring the formulation of goals and aspirations to fit
the new approach. The most important conceptual details will be introduced along with
the definition of the most essential terms. Systems analysis being a 'young' scientific
discipline with wide applications in resource management is certainly prone to diverging
interpretations. Therefore the definitions presented here do not claim universal
acceptance. Rather, they follow the mainstream interpretations widely accepted and used
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in the field of water resources management.

In general it can be said that 'water resources management' consists of the following major
steps:

Assessment: - of Water Resources

- Uses, Needs, Future Demands

- Disasters

- Financial Capabilities and Constraints

- Technical Options

- etc.
Planning: - Siting, Scaling, Sizing, Selecting, Sequencing,
Design: - Structural design, Costing, Tender documents
Implementation: - Construction, Supervision

- Enforcement of Laws
Operation: - Monitoring and Regulating of System Performance
Maintenance: - Control, Repair, Replacement
2. Systems

4

The term ‘system ° is freqeuntly used with quite different meanings. To give some
examples we speak about a groundwater system, or a river system or a sewage system etc.
These examples have in common that only a part of the real world is being considered for
a specific problem. In modern water resources management the framework for evaluation
and deciion making is being widened including economic, ecological and social
objectives. Therefore we often face a problem consisting of several subsystems which are
linked through the decisions being made. The planning, design and implementation of a
reservoir is not only a problem of hydraulic engineers because the scheme should serve
purposes like flood protection, it should perhaps support irrigation and /or recreation and
has therefore a broad range of longlasting impacts.

Sometimes a single decision is taken like to build a reservoir but the most frequent case is
that a series of actions, decision is required to develope and operate a scheme.While a
system in not related to any specific size, purpose or context, there are obvious
limitations, applied to identify a system. By using adjectives like social, natural,
environmental, legal, or production the essence of the system considered becomes
evident. Moreover these systems are not only limited by their scope but also by our ability
to grasp, identify and last but not least to characterize the interrelationships among the
elements involved. By focusing only on the most essential, or readily quantifiable
interactions the system derived becomes itself a model of reality.
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INPUT at time t OUTPUT at time t+1

Discharge Q(t) Discharge QOUT(t+1)
> STATE of the System S(t) >
Temperature T(t) > Water Storage V(t) Hydropower HP( t+l‘

Water Quality WQ(t)
Water Temperature RT(t)
Pollution X(t) Pollution XOUT(t+1;

' r

DECISIONS D(t)

Reservoir Operation Rule

Fig. 1 System elements for a single reservoir example

As it is seen, the system is ‘carved out' of its environment. Inputs and outputs substitute
the severed interactions between elements of the defined system and elements left outside.
In the dynamic case there will be a sequence of such blocks where the state at time t will
define together with the decision taken at time t the state in the next time period. Of
course there may be also a feedback loop which means that an output may influence the
next decision step. It is obvious, that this setup implies the factor 'time' in order to
accommodate the time lag necessary for the feedback and corresponding adaptation, thus
indicating the very dynamic nature of the system.

From the point of view of the system analyst both inputs and outputs can be classified into
different subsets. While the controlled and partially controllable inputs are described by
decision variables, the uncontrolled input influence the state of the system without being
subject to any direct influence. The set of feasible realizations of decision variables
constitutes the decision space.

On the output side desirable and undesirable outputs are of particular interest. It is aimed
to maximize the desirable and/or minimize the undesirable output while selecting the
course of decision (by assigning numerical values to the decision variables).

The transformation of the system due to both decision variables and uncontrolled input

are described by a set of variables called state variables, while the system response
behaviour (rate of change of the state variables due to variable inputs) is characterized by
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system parameters.

As equivalent of the general terms, described previously the following list can be
compiled without providing an exhaustive set.

Inputs D: controlled: - costs allocated for construction,
operation and maintenance
partially controlled: - reservoir releases (spilling might
occur)
E uncontrolled: - precipitation (streamflows)

depending on whether the watershed
response is included in the model or

not
Outputs O: desirable: - water utilization (benefits)
undesirable: - water deficiencies, floods (losses)
neutral: - system outflow, seepage, percola
tion, evaporation etc.
State variables S: - reservoir volumes in timestep t

- soil moisture in timestep t

- vegetation cover in timestep t

- (winter, summer)

System parameters: reservoir capacities,

slopes, soils, runoff coefficient, (e.g.
K and n, parameters of a linear
reservoir  cascade model for
rainfall/runoff modeling or
streamflow routing)

While a hydro-minded engineer would almost be satisfied with this system, water
resources management is not left alone to them. In fact, just a slice pulled out horzontally
from a tall "pie’ of different disciplines (subsystems) has been displayed.

Further, we have to add two more elements from systems analysis, namely the output
function and the state transition function. An output function relates the output O (it is
used as a vector) to the state S and the Input I:

O(t+1)=F(S(t); 1(t), D(1)) 1)
While the state transition function describes the dynamic behaviour of the system:
S(t+1)=G(S(t); 1(t),D(1)) ()

These two function represent the models which are generally apllied in water
management. For the case of reservoir operation the output function may constitute the
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reservoir operation rule like

Qout(t)=Qin(t) for Qmin<Qin<Qmaxtol
Qout(t)=Qmaxtol for Qin(t)>Qmaxtol 3)
Qout(t)=Qmin for Qin(t)<Qmin

While the state transition function is defined by the water balance equation
S(t+1)=S(t) + Qin(t)*1 - Qou(t)*1 4)

The symbol ‘1’ stand here only to consider the time interval.

3 Goals, objectives

Each plan, either for design or for operation, is based on goals and objectives. The
difference between these two terms is not clerly defined. Goals may rather be defined by a
clear target while an objective indicates rather a direction of developement.

Objectives indicate the directions of state change of a system desired by the decision
maker(s). They reflect the aspirations of whoever is providing the value structure and as
such indicate the directions sought (Armijo, 1981; Hwang & Yoon, 1981; Tecle et al,
1987a). There are three possible ways to improve an objective:

maximizing it,

minimizing it or

maintaining it at an existing position.

The first two are self-evident. An example of the third situation would be a farmer
wishing to maintain a constant supply of water to a field where both an excess or
deficient amount of water will adversely affect output. Another viewpoint is to consider
five types of "aspirations", which are objectives over a range: near a target, greater than
a threshold, less than a threshold, inside of an interval, outside of an interval. Extended
definitions of objectives with respect to these concepts are available in references such
as Monarchi et al. (1973) Keeney and Raiffa (1976), Zeleny (1982), Osyczka (1984),
Tecle et al. (1987a), Bogardi and Duckstein (1992).

Another aspect of an objective which needs to be raised at this point has to do with its
generation. There is substantial information on the process in the literature, for example,
in Manheim and Hall (1968), MacCrimmon (1969), Keeney and Raiffa (1976) and
Wymore (1992). Approaches include:
e examination of relevant literature to see how others have been modeling on the same
kind of problem,
analytical study of the problem and
casual empiricism as explained in Keeney and Raiffa (1976). The analytical
approach suggests that by building a model of the system under consideration and
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identifying the relevant input and output variables, the appropriate objectives for the
problem will crystallize. The casual empiricism approach, on the other hand,
suggests observing people to see how, in fact, they are presently making decisions
relevant to the given problem. Any one of these approaches can help in generating
objectives and a combination may help even further.

The process of modeling and solving a problem with two or more noncommensurable
and conflicting objectives is known in the literature as multiobjective decision making
(MODM). Objectives are noncommensurable if their level of attainment, with respect to
given attributes cannot be measured in common units (Szidarovszky et al., 1978;
Duckstein & Opricovic, 1980; Duckstein & Gershon, 1983; Tecle & Duckstein, 1989).
Objectives are conflicting if an increase in the level of one objective can only be
achieved by decreasing the attainment level of another objective (Gershon, 1981b;
Steuer, 1986; Szidarovszky et al., 1986). Usually, a conflict arises when the attainment
of each objective in a problem requires the shared use of limited available resources
(Fraser & Hipel, 1984; 1988; 1989). Examples of objectives are optimization of
economic payoff, environmental quality, water supply, water quality and mitigation of
natural and man-made hazards.

3.1 Attributes

These refer to the characteristics, factors, qualities, performance indices or parameters
of alternative management schemes or other decision processes. An attribute should
provide a means for evaluating the levels of an objective; as such, it is defined here as a
measurable aspect of judgement by which a dimension of the various decision variables
or alternative management schemes under consideration can be characterized. This
characterization, in turn, is made possible through determination of at least one
empirical indicator (dissolved salt concentration) for each attribute (water quality).
Then, to make the measurement complete, scales are constructed one for each attribute
in the form of a set of estimates with an order relation.

According to Ozernoy and Gaft (1977), the choice of scale type depends on the
technique of measurement to be used and on the magnitude of the properties being
measured. Then, depending on the desired accuracy of measurement, values are
determined for the magnitude characterized by the empirical indicator and these values
need to be in the region of feasible estimates (Ozernoy, 1985). In model-based
mathematical system theory, a distinction is made between performance indices (or

attributes) such as reliability, and resource indices, such as money or land (Wymore
1976, 1992).

A decision analysis problem consisting of more than two attributes is known as a
multiattribute decision problem and may be solved using a multiattribute decision
making (MADM) procedure. The procedure involves the selection of the "best"
alternative course of action from a given number of alternatives described in terms of
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their attributes. This kind of methodology is illustrated in Gershon and Duckstein
(1983), Duckstein and Bogardi (1987), Tecle et al. (1987a, b). Examples of attributes
are flood damages sediment yield, nitrate concentration.

3.2 Criteria

The dictionary meaning of criteria is standards, rules or tests on which iudgements or
decisions can be based. In decision making theory, however, a criterion may represent
either an attribute or an objective. In this sense, a multicriterion decision problem means
either a multiattribute or a multiobjective decision problem or both. Multicriterion
decision making (MCDM) is, therefore, used to indicate the general field of study which
includes decision making in the presence of two or more conflicting objectives and/or
decision analysis processes involving two or more attributes.

3.3 Decision variables, alternative schemes and parameters

Decision variables are the vehicles used to specify decisions made by a decision maker
(DM). In mathematical programming, they represent the numerical variables whose
values are to be determined and are denoted by x;, j =1, ..., J. The symbol x;is aj =1,
.. , J decision variable representing the j™ quantity within a set of J quantities, for
example, water release from a reservoir at a given time j =1, ..., J.

In mathematical programming problems, variables are usually assumed to be
nonnegative. In most cases these decision variables are continuous and also assumed to
have implicit upper boundaries. In problems involving mixed numerical and non-
numerical data, the different objectives can only be approached using a set of discrete
alternative actions. The members of this set are carefully selected by considering all
important, relevant information on the problem and its objectives and the alternative
actions themselves (Gershon et al., 1982). Different ways of selecting alternatives are
presented in Jantsch (1967) and Ozernoy (1983, 1985, 1987). If too many alternatives
are made available in the process, then some sort of filtering or screening mechanisms
such as ELECTRE I (Benayoun et al., 1966; Gershon et al., 1982; Tecle 1988; Tecle &
Duckstein, 1990) and exclusionary screening (Hobbs, 1979; Goicoechea et al., 1982)
can be used to eliminate the dominated alternatives. Once the selection process for the
set of alternatives to be considered is complete, a one to one relationship between the
alternatives and the criteria of the problem under consideration is developed using some
measurement scales (Rietveld, 1980; Voogd, 1983; Tecle, 1986). The information
consisting of criteria, alternatives and measurement scales is then used to construct an
evaluation matrix of criteria versus alternatives, upon which MCDM solution
techniques are applied in order to select the "best" alternative possible plan(s). This
concept has been extensively developed in many case studies such as in Voogd, 1983;
Tecle et al., 1988a,b to mention a few.
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During the problem formulation stage of the mathematical decision process, one should
decide which quantities are to be treated as decision variables and which ones are to be
taken as fixed. The quantities whose values are fixed are called parameters. These
quantities remain relatively fixed because the values are either objectively assigned and
we are not at liberty to change them or we have learned from experience that particular
values of the respective quantities always give good results, leaving us with no reason to
treat such quantities as decision variables. In any case, mathematical relationships
between the decision variables and the parameters constitute a major part of the problem
formulation stage of the decision analysis process.

3.4 Constraints

These are restrictions on attributes and decision variables which may or may not be
expressed mathematically. They are usually dictated by such factors as environment,
physical processes, economics, cultural, legal and/or resources aspects which must be
satisfied in order to produce an acceptable solution. In mathematical form, constraints
describe dependencies between decision variables and parameters, and may be stated in
the form of equalities (mass balance), inequalities (resources constraints) or
probabilistic statements (reliability constraints).

3.5 Decision space and objective space

A multicriterion programming problem can be represented in a vectorial notation as:

“Satisfice” f () = (fix), 200, ..., fi() (5)
Subject to a®x)<0,k=1,2,..,K (6)
Xj>0, j=1.2,..7 @)

Here there are I objective functions fi(x), each of which is to be "satisficed" subject to
the constraint sets (6) and (7). The region defined by this constraint set is referred to as
the feasible region in the J-dimensional decision space. In this expression, the set of all
J-tuples of the decision variable x, denoted by X forms a convex subset of a finite J-
dimensional Euclidian space; in many other applications X is defined to be discrete
(Zionts, 1981; Voogd, 1981, 1983; Szidarovszky et al., 1986). In the further special case
when X is finite, then the most satisficing alternative plan has to be selected from that
finite set X. It is important to note at this point that the word "optimum" which includes
both the maximization of desired outcomes and minimization of adverse criteria is
replaced by the word "satisfactum" and "optimize" is replaced by "satisfice" in this
discussion. The reason is that when dealing with two or more conflicting objectives one
cannot, in general, optimize all the objectives simultaneously as an increase in one
objective usually results in a decrease of the other(s). In such circumstances trade offs
between the objectives are made in order to reach solutions that are not simultaneously
optimum but still acceptable to the DM with respect to each objective (Cohon et al.,

30



1979; Gershon, 1981a; Goicoechea et al. 1982; Bogardi et al., 1984; Roy, 1985;
Szidarovszky et al. 1986).

In a mathematical programming problem such as the one defined by Egs. (5-7), the
vector of decision variables X and the vector of the objective functions f(x) define two
different Euclidian spaces. These are

the J-dimensional space of the decision variables in which each coordinate axis
corresponds to a component of vector X, and

the I-dimensional space F of the objective functions in which each coordinate axis
corresponds to a component of vector f(x). Every point in the first space represents a
solution and gives a certain point in the second space which determines the quality of
that solution in terms of the values of the objective functions. This is made possible
through a mapping of the feasible region in the decision space X into the feasible region
in the objective space F, using the I-dimensional objective function.

The definition and concepts given above can be easily understood with the help of a
simple continuous example. For this purpose, consider the following bicriterion and
bivariate linear problem.

max. fj(x) =2x1 - x;
max. fo(x) = -x1 + 3x,

subject to  g;(x): X3 o+ X2 < 10
ga2(x): X1 < 7
ga(x): X2 < 6
gX): X + xa < 4
gs(x): -Xj < 0
g6(X): - X2 < 0

The feasible region in the decision space X of this problem is shown in Fig. 2. It is the
space bounded by all the relevant constraints, that is, any point x in the feasible region
satisfies these constraints. On the other hand, any constraint whose boundary does not
intersect the feasible space is redundant.

The feasible region in the objective or payoff space f(x) is a transformation of the
feasible decision space and is determined by enumeration of all the extreme points and
subsequent computation of the value of each objective function at each of the corner
solutions as shown in Fig. 3 This figure illustrates how the nondominated set can be
identified in this feasible region. To find a final satisficing solution, an interaction
between the analyst and decision maker is required. Possible mechanisms for this
interaction are provided next.
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