Wasserwirtschaftliche Planungsmethoden

Naturschutz und Wasserkraft Untere Donau

o.Univ.Prof. Dipl.Ing. Dr. H.P. Nachtnebel

Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau

Fallbeispiel Ausbauvarianten der Donau

- Für Donauausbau östlich von Wien mehrere Kraftwerksvarianten diskutiert
- jedoch eine der verblieben freien Fließstrecken der Donau in Österreich
 - → bisher kein Konsens gefunden zwischen energiewirtschaftlichen und ökologischen Gesichtspunkte

Hier wird ein Vergleich der Kraftwerksvarianten versucht

sowohl ökonomische als auch umweltbezogene und soziale Gesichtspunkte werden miteinbezogen

Einleitung und Problemstellung

- österreichische Donaustrecke energetisch weitgehend durch Laufkraftwerke genutzt
- Gleichzeitig unterstützen diese Anlagen die Schifffahrt und den Hochwasserschutz
- > verbliebenen Abschnitte betreffen
- die Wachau und
- flußab vom Kraftwerke Freudenau (Wien) bis Wolfsthal

Einleitung und Problemstellung

- > 1984 mit den Bauarbeiten für das Kraftwerk Hainburg begonnen
- Anfang 1985 Ökologiekommission der Bundesregierung konstituiert
 - → Ausbau bzw. die Erhaltung der Fließstrecke diskutiert
 - → in ihrem Abschlußbericht (Ökologiekommission, 1985 a) Auffassung, dass
 - das Projekt Hainburg für den gesamten Donauraum zwischen Wien und Hainburg die Zerstörung des Ökosystems bedeute
 - > die Staustufe Wien kurzfristig realisierbar sei
 - die Staustufe Wolfsthal II mittelfristig realisierbar sei
 - die bestehende Fließstrecke zwischen Wien und Hainburg zu erhalten sei

Einleitung und Problemstellung

Im Regierungsbeschluss von Pertisau (1987)

- → Nutzung der Wasserkraft östlich von Wien unterstrichen
- → Planung eines Nationalparks im Bereich Donau-March begonnen

dementsprechend Nutzungsanforderungen

- Energieerzeugung
- > Schifffahrt
- Trinkwassergewinnung
- Nationalparkeinrichtung
- Erhaltung der donautypischen Lebensräume und deren ökologische Funktionsfähigkeit

die miteinander im Konflikt stehen

Darstellung der Ressourcen im Projektsgebiet

Wasserkraftpotential

Rohenergiepotential (rechnerische Größe)bezogen auf vollständige Nutzung des Wasserdargebotes über die gesamte Gefällestrecke

Abschnitt	Flusskilometer	Rohenergiepotential
	(km)	(GWh)
Greifenstein-Wien (Reichsbrücke)	1948.9 - 1929.1	1281
Wien (Reichsbrücke)-Hainburg	1929.1 - 1883.9	3022
Hainburg-Marchmündung	1883.9 - 1880.1	311
Mündung-Grenze	1880.1 - 1872.7	524
Geifenstein-Grenze	1948.9 - 1872.7	5138

Rohenergiepotential der Donau flußab von Greifenstein bis zur Grenze

Darstellung der Ressourcen im Projektsgebiet

Ökosystem Auwald-Fließgewässer

- > In Ö 75% der Augewässer und Auwälder entlang der Donau
- Im Hauptfluß, Altarmen, fallweise überfluteten Aubereichen besteht eine hohe Diversität an Fischarten
- Augewässer einen wichtigen Lebensraum für Amphibien und Wasservögel
- Ungefähr 12,000 Tier- u. Pflanzenarten wurden in den österr. Augebieten gezählt
- → Teile unter Naturschutz gestellt sowie ein Konzept für einen Nationalpark ausgearbeitet

Darstellung der Ressourcen im Projektsgebiet

<u>Grundwasservorkommen</u>

- Donau beeinflusst das Grundwassersystem des Marchfeldes
- für landwirtschaftliche Nutzung sowie regionale Trinkwasserversorgung bedeutend
- > im ufernahen Bereich Trinkwasserbrunnen
- rechtsufrig die Heilquellen von Bad Deutsch Altenburg
- → von Veränderungen des Donauwasserspiegels beeinflusst

vier allgemein gültige Planungsziele (US Water Resources Council)

- > Förderung der volkswirtschaftlichen Effizienz
- Verbesserung der Umweltqualität
- Förderung der Regionalentwicklung
- > Steigerung des sozialen Wohlbefindens

Unter Berücksichtigung der Nutzungen und Ressourcen

→ folgende Zielsetzungen

Wasserkraftnutzung

Energiekonzept der Regierung hat folgende allgemeine Ziele

- > Reduktion des Primärenergieverbrauches und der Importe
- > Verstärkte Nutzung erneuerbarer Energieträger
- Umweltpolitische Zielvorstellung (grundsätzlich jegliche Beeinträchtigung der Umwelt auf Mindestmaß zu beschränken)

Schifffahrt

Donau von Braila bis Kehlheim nach den europäischen Schifffahrtsrichtlinien in Kategorie IV

Donaukommission empfiehlt für betrachteten Abschnitt

- Fahrwassertiefe von 2,5 m
- Breite der Schifffahrtsrinne von 150 m

Derzeit wird Strecke im Furtbereich regelmäßig abgebaggert

→ bei Niederwasser abschittsweise <2 m Wassertiefe

Regionale Wasserwirtschaft

- Bedeutung der Grundwasservorkommen für die regionale Trinkwasserversorgung
 - → in Menge und Qualität zu schützen
- durch die Eintiefung der Donau (Änderung des WSP 2-3 cm/Jahr)
 - → Einflusses auf Grundwasser und Wasserhaushalt ändert sich

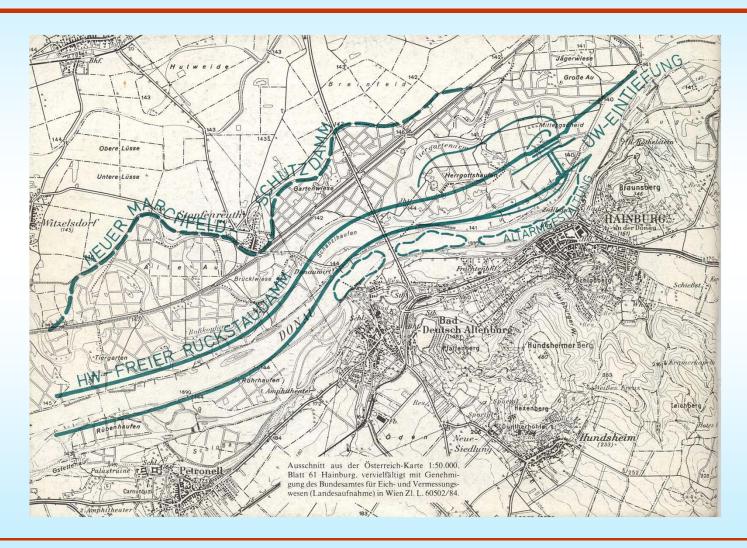
Erhaltung donautypischer Ökosysteme

- > Schutz der Auwälder gesetzlich verankert
- Erhaltung der Dynamik zwischen Fluss, Hinterland (Auwald) und Grundwassersystem
 - → freie Fließstrecke mit gesicherter Sohle angestrebt

Wasserkraftausbau an der

österreichischen Donau

STUFENPLAN DER OESTERR. DONAUKRAFTWERKE AG **GERMANY JOCHENSTEIN ASCHACH GREIFENSTEIN ABWINDEN** SLOWAKIA WALLSEE MITTERKIRCHEN HAINBURG 300 - PROJECT 250 **OPERATION** 200 150 m. u. A. STREAM Q 2150 2200 2100 ·O 2050 O 1950 9 1900 LOCATION TOTAL CAPACITY 2580* 366 2136 15539* OUTPUT (IN MIO. KWH)

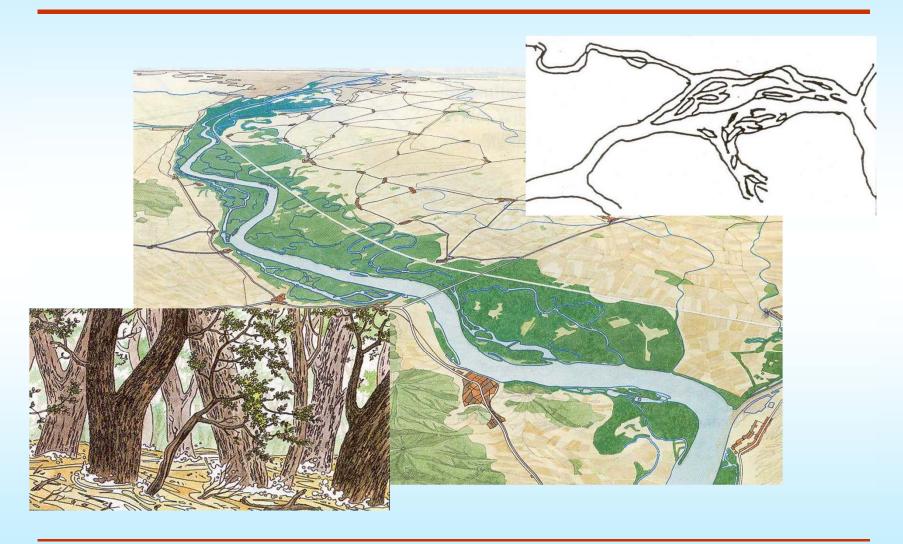


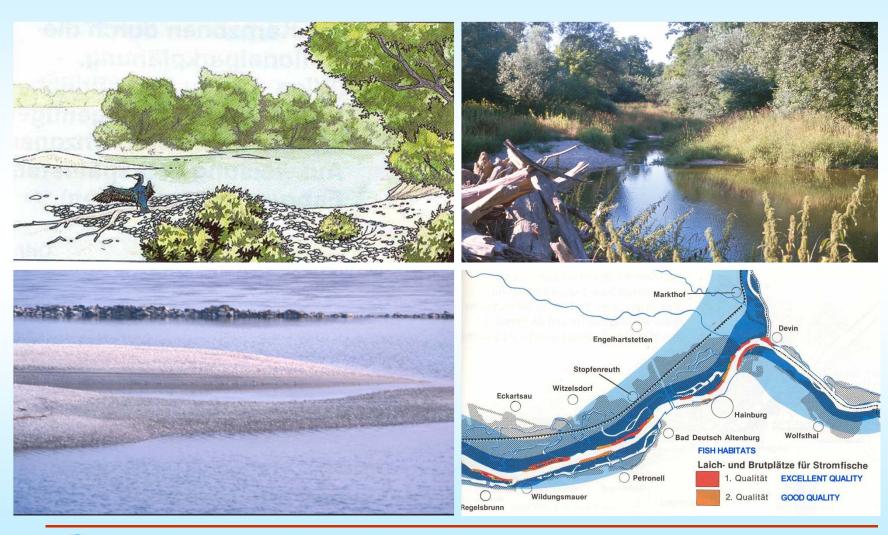
Grössere Augebiete an der Donau



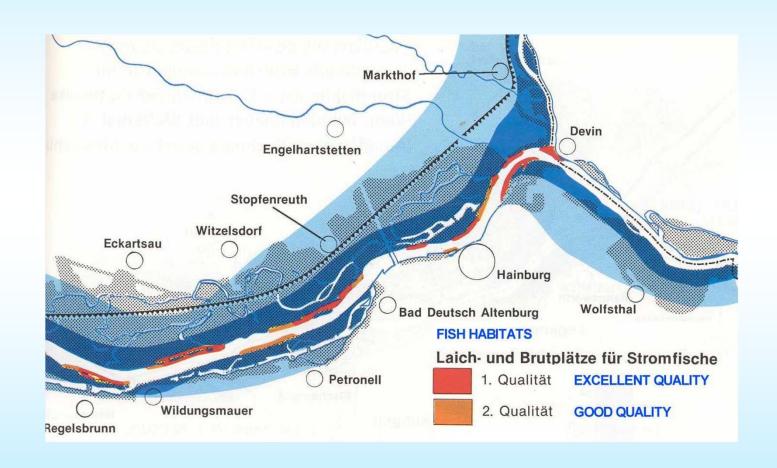
Das KW Hainburg

Die Geschichte Hainburg





Die Lage



Die Umwelt

Fisch Habitate und Grundwasserdynamik

Einige Daten zur Biologie

- an estimate of 5000 faunal species is given for the region. Several of them are on the list of endangered species.
- 109 species of the birds hatching in Austria are native to the floodplain areas.
- 57 species fish species were found there from which 32 species are abundant.

Das KW Freudenau

Definition der Kriterien

Zur Charakterisierung der Ziele wurden 33 Kriterien formuliert

→ haupsächlich aus Berichten der Ökologiekommision

Tabelle gibt eine Übersicht über Oberziele, Teilziele und Kriterien

Oberziele	Teilziele	Kriterien	Maßeinheit
Möglichst wirtschaftliche Nutzung der Ressourcen	-Maximale Energie- nutzung	- Regelarbeitsvermögen	GWh
(ökonom. Zielsetzung)	-Minimale Kosten	-Investitionskosten -Folgekosten	Mrd. öS ordinal

Definition der Kriterien

Oberziele	Teilziele	Kriterien	Maßeinheit
Erhaltung der donau-	-Erhaltung der	-Flächenverlust Bau	ha
typischen Ökosysteme	natürlichen dynamischen	-Pioniervegetation	ha
und Gesellschaften	Auwälder	-Auwald	ha
(ökolog. Zielsetzung)		-Auwaldsaum	m
		-Verlust an Fläche dynamischer	%
		Au	
	-Erhaltung der Struktur- vielfalt im Ufer- und	-Fließstrecke zu Stau- raumlänge	km/km
	Strombereich sowie der	-Länge belassener Ufer	km
	Wasserqualität im Strom	-Wasseranschlagslinie bei RNW und MW	km
		-Anzahl der verbliebenen Gewässerverbindungen	Anzahl
		-Wasserqualität	ordinal
	-Erhaltung der typischen Population	-Auswirkungen auf Tierpopulationen	ordinal
	1	-Nationalparkverträglichkeit	ordinal

Definition der Kriterien

Oberziele	Teilziele	Kriterien	Maßeinheit
Erhaltung der donau- typischen Ökosysteme und Gesellschaften	-Erhaltung des derzeitigen Grundwasserregimes	-Länge der bis zum Grundwasserstauer dichten Dämme	km
(ökolog. Zielsetzung)	sowie der Grundwasser- qualität	-Flächen mit GW-Spiegel- änderungen > 0,5 m	km²
	1	-Grundwasserqualität	ordinal
Sozioökonomische	-Schaffung und	-Induzierte Beschäftigungs-	Mannjahre
Verbesserungen (Sozioökonom. Zielsetzung)	Sicherung von Arbeitsplätzen	jahre -Dauerarbeitsplätze	Anzahl
	-Erholungswirkung	-Erholungswirkung	ordinal
	-Nutzbarkeit der Donau als Schifffahrtsweg	-Behinderung der Schifffahrt	Tage

Festlegung der Alternativen

Grundlagen

- Studie "Varianten zum Donauausbau östlich von Greifenstein"
- Variante Engelhartstetten (GP-Plan 1987)
- Planungen der DOKW

Zu Kraftwerksvarianten wurde noch Nullvariante hinzugefügt

Bei Varianten gibt es jeweils eine Untervariante

→ entweder ohne oder mit Begleitmaßnahmen

Begleitmaßnahmen bezeihen sich auf

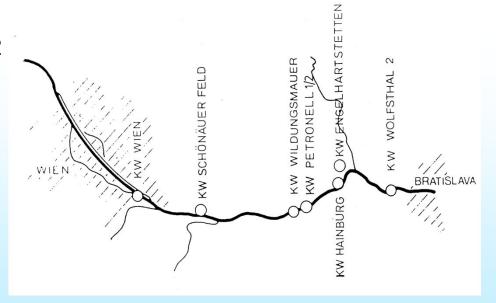
- bauliche Maßnahmen, z.B. die Schaffung von Donau begleitenden Gerinnen (Gießgänge)
- energiewirtschaftliche Maßnahmen, indem der Energieausfall durch Energieimporte gedeckt wird

Festlegung der Alternativen

somit folgende mögliche Varianten

Var. 1 Freie Fließstrecke ohne Energieimport (Nullvariante

Var 1a Freie Fließstrecke mit Energieimport


Var. 2 Hainburg

Var. 3 Schönauer Feld, Petronell 1, Wolfsthal 2

Var. 4 Petronell 2, Wolfsthal 2

Var. 5 Wildungsmauer, Wolfsthal 2

Var. 6 Engelhartstetten

Übersichtsplan Donau Wien – Staatsgrenze

Festlegung der Alternativen

Nr. der Variante	2	3	4	5	6
Standorte	Hainburg	Schönauer	Petronell 2,	Wildungs-	Engelhart-
		Feld,		mauer,	stetten
		Petronell 2,			
		Wolfsthal 2	Wolfsthal 2	Wolfsthal 2	
Situierung (km)	1883	1906		1892,5	1883
		1890	1890		
		1873	1873	1873	
Anzahl d. Stauhaltungen	1	3	2	2	1
Installierte Leistung (MW)	360	247	327	327	352
Regelarbeitsvermögen (GWh)	2075	1700	1990	1920	2035
Investitionskosten (Mrd. ATS)	11,4	24,9	15,9	15,6	12,2

Tab.: Variantenvergleich bezüglich Standort, Leistungskennzahlen und Investitionskosten

Jede Variante wird in ihren Wirkungen durch 33 Kriterien erfasst

Einige Kriterien sind

- kardinal (messbar), andere
- ordinal (qualitativ charakterisiert)

einige andere Wirkungen werden noch näher beschrieben

Verhältnis Fließstrecke zu Stauraumlänge

Vor allem bei größeren Staustufen weitgehende Veränderungen

 des Abflussgeschehens der Verbindung des Stromes mit Aulandschaften

Ziel → möglichst kurze Stauraumlänge bzw möglichst lange Fließstrecke

Länge Fließstrecke zum Stauraum

Var 1 48 : 0

Var 2 10 : 38

Var 3 7,25 : 40,75

Var 4 4,25 : 43,75

Var 5 7,75 : 40,25

Var 6 10 : 38

Länge der naturbelassenen Ufer

- Wesentliche Merkale, wie Grundwasserdynamik, Überschwemmungen, Schotterflächen, Flachwasserzonen, etc. prägen hier die Uferzone
- > innige Kontakt zwischen Strom und Au erhalten
- naturbelassene Uferstrecke stellt auch eine entscheidende Randbedingung für die Grundwasserdynamik dar

Länge der naturbelassenen Ufer (linkes und rechtes Ufer addiert [km])

```
Var 1 96
Var 2 23
Var 3 36,50
Var 4 35,50
Var 5 40,10
Var 6 23
```


Reduktion der Überflutungshäufigkeit und Menge

- Durch Dämme bei steigt Anteil der Hochwässer, die durch den neuen Hauptstrom abgeführt werden
 - → Reduktion der Wassermengen, die sonst Augebiete überfluten
- ➤ Auch auf freien Fließstrecke mittelfristig Überflutungshäufigkeit reduziert → fortschreitenden Eintiefung
 - → teilweise durch Erhöhung der Hochwasserspitzen kompensiert
 - → jedoch langfristig Gefahr für Var 1
- > Aus pflanzenphysiologischer Sicht von größerer Bedeutung
 - → Hochwasserereignisse während der Vegetationsperiode als
 - → Niedrigwasserstände außerhalb der Vegetationsperiode

Tab.: Auswirkungen der Varianten auf die Augebiete

	Anzahl der verbleibenden Gewässer-	Flachwasserz	zonen in ha
Variante	verbindungen	RNW (-1,0	MW (-1,5 m)
1	42	165,5	166,2
2	11	57,8	52,5
3	25	47	47
4	20	39,8	39,8
5	23	48,6	48,6
6	12	57,8	57,8

Wirkungsmatrix: Alternativen vs. Kriterien

Kriterien	Maßeinh.	1	la	2	2a	3	3a	4	4a	5	5a	6	6a	Gewicht	Skala	Maxi	Min
Regelarbeitsvermögen	GWh	ō	2075	2075	2075	1700	1700	1990	1990	1791	1791	2075	2075	20	20	2075	0
Investitionskosten	Mrd S	0.1	22.3	11.4	12.0	24.9	26.1	15.9	16.7	15.6	16.4	12.2	12.8	20.0	20.0	0.1	26.1
Folgekosten	ordinal	2.0	2.0	3.0	3.0	5.0	5.0	5.0	5.0	5.0	5.0	3.0	3.0	6.0	5.0	1.0	5.0
Beschäftigungsjahre	Mannjahre	0.5	0.5	17.1	18.0	37.5	39.2	23.9	25.1	23.4	24.6	18.3	19.2	15.0	15.0	39.2	0.5
Langzeitbeschäftigung	Anzahl	30.0	30.0	70.0	70.0	210.0	210.0	140.0	140.0	140.0	140.0	70.0	70.0	10.0	10.0	210.0	30.0
Erholung	ordinal	1.0	1.0	4.0	4.0	3.0	3.0	4.0	4.0	4.0	4.0	4.0	4.0	12.0	10.0	1.0	5.0
Schifffahrt	Tage	111.0	111.0	116.0	116.0	11.0	11.0	11.0	11.0	11.0	11.0	116.0	116.0	12.0	15.0	11.0	116.0
Heilquellen	ordinal	2.0	2.0	3.0	3.0	1.0	1.0	1.0	1.0	1.0	1.0	3.0	3.0	5.0	5.0	1.0	5.0
Bauflächen	ha	0.0	0.0	740.0	740.0	660.0	660.0	655.0	655.0	465.0	465.0	496.0	496.0	3.0	10.0	0.0	740.0
Anfangsvegetation	ha	18.2	18.2	0.8	0.8	7.1	7.1	1.4	1.4	3.1	3.1	1.1	1.1	4.0	15.0	18.2	1.1
Flächenverlust d. Überf		0.0	0.0	86.4	86.4	25.0	25.0	62.0	62.0	52.0	52.0	87.8	87.8	10.0	20.0	0.0	87.8
Auwald	ha	120.2	120.2	18.3	18.3	55.0	55.0	32.5	32.5	38.9	38.9	24.0	24.0	1.0	10.0	120.2	18.3
Waldrand	km	33.8	33.8	2.9	2.9	1.6	1.6	12.1	12.1	19.0	19.0	3.4	3.4	1.0	10.0	33.8	2.9
Galeriewälder	km	16.0	16.0	5.9	0.6	8.7	8.7	7.6	7.6	10.3	10.3	6.4	6.4	1.0	10.0	16.0	5.9
Wasservögel	ordinal	4.0	4.0	4.0	4.0	2.0	2.0	2.0	2.0	2.0	2.0	4.0	4.0	2.0	10.0	1.0	5.0
Fauna.	ordinal	1.0	1.0	5.0	5.0	3.0	3.0	4.0	4.0	4.0	4.0	5.0	5.0	16.0	15.0	1.0	5.0
Vereinbar.m Nationalpa		1.0	1.0	5.0	5.0	3.0	3.0	4.0	4.0	4.0	4.0	5.0	5.0	6.0	15.0	1.0	5.0
Flußstau	%	1.0	1.0	0.3	0.3	0.2	0.2	0.1	0.1	0.2	0.2	0.3	0.3	8.0	15.0	1.0	0.1
Historisches Ufer	km	96.0	96.0	23.0	23.0	36.5	36.5	35.5	25.5	40.1	40.1	23.0	23.0	3.0	10.0	96.0	23.0
Uferlinie (1)	km	113.8	113.8	83.7	83.7	81.6	81.6	82.7	82.7	85.0	85.0	83.7	83.7	1.0	10.0	113.8	81.6
Uferlinie (2)	km	100.0	100.0	83.7	83.7	81.6	81.6	82.7	82.7	85.0	85.0	83.7	83.7	1.0	10.0	100.0	81.6
Flachwasser (1)	ha	165.5	165.5	57.8	57.8	47.0	47.0	39.8	39.8	48.6	48.6	57.8	57.8	3.0	10.0	165.5	39.8
Flachwasser (2)	ha	166.2	166.2	52.5	52.5	47.0	47.0	39.8	39.8	48.6	48.6	52.5	52.5	3.0	10.0	166.2	39.8
Schotterzonen (1)	ha	168.1	168.1	1.4	1.4	0.0	0.0	0.0	0.0	12.9	12.9	1.4	1.4	2.0	10.0	168.1	0.0
Schotterzonen (2)	ha	6.8	6.8	0.0	0.0	0.0	0.0	0.0	0.0	2.1	2.1	0.0	0.0	1.0	10.0	6.8	0.0
Fließkontinuum	Anzahl	42.0	42.0	11.0	11.0	25.0	25.0	20.0	20.0	23.0	23.0	12.0	12.0	4.0	10.0	42.0	11.0
Degradierung	ordinal	5.0	5.0	2.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	7.0	10.0	1.0	5.0
Oberflächenwasserquali	tät ordinal	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	4.0	15.0	1.0	5.0		
Grundwasserqualität	ordinal	2.0	2.0	5.0	4.0	3.0	2.0	4.0	3.0	3.0	2.0	5.0	4.0	2.0	10.0	1.0	5.0
Undurchlässige Dämme		0.0	0.0	57.8	58.8	15.5	15.5	42.5	42.5	31.5	31.5	57.8	57.8	4.0	15.0	0.0	57.8
Veränd, d. mittl. Grundy		65.5	65.5	68.3	6.3	69.5	29.7	67.3	23.5	61.9	20.8	68.3	6.3	4.0	15.0	6.3	69.5
Beeintr. der Grundwasse																	
dynamik (<1.0)	km ²	51.8	51.8	4.1	4.1	14.3	10.1	12.4	9.2	12.4	9.2	4.1	4.1	4.0	15.0	51.8	4.1
Beeintr. der Grundwasse	er-														160	26.0	
dynamik (>1.0)	km ²	35.9	35.9	4.1	4.1	8.0	8.5	8.7	7.4	8.7	7.4	4.1	4.1	5.0	15.0	35.9	4.1

Bewertung der Alternativen

- → da Kriterien in verschiedenen Maßeinheiten → direkter Vergleich nicht möglich
- Projektauswirkungen a(i,k) für jedes Kriterium k auf eine Punkteskala Pk abgebildet
 - →dimensionslose Größe a'(i,k)
 - → Je höher die Punktezahl, desto größer ist der Zielerreichungsgrad
- > einzelnen Kriterien sind nicht als gleichwertig anzusehen
- von einer Gleichgewichtung der Ziele z.B. Ökonomie und Ökologie ausgegangen
 - → Summe der zugehörigen Gewichte wird als gleich angesetzt
 - → durch Variationen dieser Summen kann dann die Bevorzugung eines Standpunktes analysiert werden

Bewertung der Alternativen

verwendetes Verfahren → ELECTRE I

Electre I vergleicht die Alternative A_i und Alternative A_j "Vorteil von i gegenüber j" wird ermittelt,

- indem Summe aller Gewichte w_k jener Kriterien k ermittelt wird
- wo A_i "besser als" A_i ist [a(i,k) "besser als" a(j,k)]

bei Gleichheit eines Kriteriums wird das Gewicht beiden Alternativen zur Hälfte zugezählt

der normierte Wert ist dann im Konkordanzmaß c(i,j) ausgedrückt

Methoden mit a-priori Präferenzen

Indizes

Übereinstimmungsindex (Konkordanz Index)

$$C(I,J) = \frac{\sum W_i; a(i,I) > a(i,J)}{\sum W_i}$$

Maß für die Dominanz von I über J

Diskordanz Index

$$D(I,J) = \frac{\underset{i}{Max \mid a(i,J) - a(i,I) \mid}}{Skala} wenn \quad a(i,J) > a(i,I)$$

Gibt an, um wie viel J besser ist als I

Methoden mit a-priori Präferenzen

Beispiel

	Variante 1	Variante 2	Gewicht	Skala	
Kriterium 1	4	10	2	10	
Kriterium 2	sehr gut	brauchbar	1	10	
Kriterium 3	2	8	2	5	
Für Kriterium	n 2				
sehr gut	gut	b	rauchbar	S	chlecht unbrauchb
10	7,5	5.	,0	2	,5

C(2/1)=4/5, da Variante 2 über Variante 1 dominiert. Die Summe aller Gewichte beträgt 5, daher 4/5

C(1/2)=1/5, da Kriterium 2, indem die Variante 1 dominiert nur ein Gewicht von 1 hat

D(1/2)=5/10, beim Kriterium 2 ist Variante 1 um 5 Einheiten besser als Variante 2 bezogen auf eine 10-stufige Skala

Bewertung der Alternativen Konkordanz

Konkordanz Matrix												
	Al	Ala	A2	A2a	A3	A3a	A4	Ma	A5	A5a	A6	A6a
Al	0	0,5	0,67	0,65	0,73	0,71	0,63	0,61	0,61	0,61	0,67	0,65
Ala	0,5	0	0,72	0,7	0,63	0,61	0,63	0,61	0,61	0,61	0,72	0,7
A2	0,32	0,27	0	0,5	0,39	0,37	0,38	0,38	0,36	0,36	0,5	0,49
A2a	0,34	0,29	0,5	0	0,39	0,39	0,4	0,4	0,38	0,38	0,52	0,5
A3	0,26	0,36	0,61	0,61	0	0,49	0,61	0,63	0,51	0,5	0,6	0,6
A3a	0,29	0,39	0,63	0,61	0,5	0	0,61	0,64	0,51	0,53	0,62	0.60
A4	0,36	0,36	0,62	0,59	0,38	0,38	0	0,52	0,4	0,44	0,6	0,58
A4a	0,38	0,38	0,62	0,6	0.36	0,36	0,48	0	0,4	0,4	0,6	0,58
A5	0,38	0,38	0,64	0,62	0,49	0,49	0,6	0,6	0	0,52	0,64	0,62
A5a	0,39	0,39	0,64	0,62	0,47	0,47	0,55	0,6	0,48	0	0,64	0,62
A6	0,32	0,27	0,5	0,48	0,4	0,38	0,39	0,39	0,36	0,36	0	0,5
A6a	0,34	0,29	0,51	0,5	0,4	0,4	0,42	0,41	0,38	0,38	0,5	0

Bewertung der Alternativen Diskordanz

Disko	rdanz N	Matrix										
	Al	Ala	A2	A 2a	A3	A3a	A4	A4a	A 5	A5a	A6	A 6a
Al	0	0,85	0,42	0,7	0,72	0,75	0,71	0,71	0,71	0,71	0,39	0,7
Ala	1	0	1	1	0,82	0,82	0.96	0,96	0,86	0,86	1	1
A2	0,98	0,98	0	0,74	0,75	0,75	0,75	0,75	0,75	0,75	0,16	0,74
A2a	0,98	0,98	0,02	0	0,75	0,75	0,75	0,75	0,75	0,75	0,16	0,16
A3	0,68	0,95	0,52	0,75	0	0,47	0,35	0,55	0,36	0,58	0,49	0,75
A3a	0,68	1	0,57	0,54	0,07	0	0,39	0,36	0,4	0,37	0,53	0,51
A4	0,75	0,75	0,17	0,72	0,42	0,45	0	0,52	0,15	0,55	0,14	0,72
Ma	0,75	0,75	0,2	0,2	0,42	0,42	0,05	0	0,15	0,15	0,17	0,2
A5	0,67	0,67	0,16	0,66	0,31	0,38	0,1	0,46	0	0,49	0,14	0,66
A5a	0,67	0,67	0,19	0,17	0,31	0,31	0,1	0,1	0,05	0	0,16	0,17
A6	1	1	0,03	0,74	0,75	0,75	0,75	0,75	0,75	0,75	0	0,74
A6a	1	1	0,05	0,03	0,75	0,75	0,75	0,75	0,75	0,75	0,02	0

Vergleich der Alternativen

$$C^* = 0.6$$
 und $D^* = 0.2$

4 > 2 5a > 2

5a > 44a > 25a > 4a

5 > 2 5a > 6

$$C^* = 0.6$$
 und $D^* = 0.1$

$$5 > 4$$
 $4 > 6$ $5a > 2a$

$$5 > 4$$
 $5a > 6$

$$5 > 6$$
 $5a > 6a$

Diskussion

- durch Festlegung der Gewichte der Ziele Ökonomie Ökologie ein gewisses Maß an Subjektivität
- Durch Variation der Gewichtung kann Effekt dieser Werthaltung auf Auswahl bevorzugter Alternativen analysiert werden

bei Erhöhung der ökologischen Gewichte

- gewinnt Alternative 3 an Bedeutung
- jedoch noch immer von Alternativen 5 und 5a dominiert
- Alternative 1 steigt ebenso zu interessanten Alternativen auf

Diskussion

Varianten

- Wildungsmauer und Wolfsthal 2 (Var 5)
- Dreistufenlösung Schönauer Feld, Petronell und Wolfsthal 2, (Var 3)
- → erscheinen interessant
 - Hainburg (Var 2)
 - Engelhartstetten (Var 6)
- → als ungünstig zu beurteilen

Nullvariante ist stark von Gewichtung abhängig

Ergänzend könnten noch die Unsicherheiten in den Daten und deren Auswirkung auf die Reihung analysiert werden

Zusammenfassung

- Der Ausbau der Unteren Donau (flussab von Wien) ist seit Jahrzehnten Gegenstand von Diskussionen
- Die Diskussionen, Unterlagen der Ökologiekommission wurden analysiert
- zugänglichen Daten wurden im Hinblick auf 33 Kriterien ausgewertet und die Projektsauswirkungen abgeschätzt
- > einige Kriterien auf ordinale Skala abgebildet
- Ausgehend von ökologischen und ökonomischen Gleichgewichtung Reihung der Projektvarianten vorgenommen
- > Einfluss der Gewichtung wurde geprüft
- Variante Wildungsmauer und Wolfsthal 2 als Kompromißlösungen anzusehen
- Wird von hoher ökologischer Gewichtung ausgegangen, treten die Varianten 1 und 1a, in den Vordergrund

