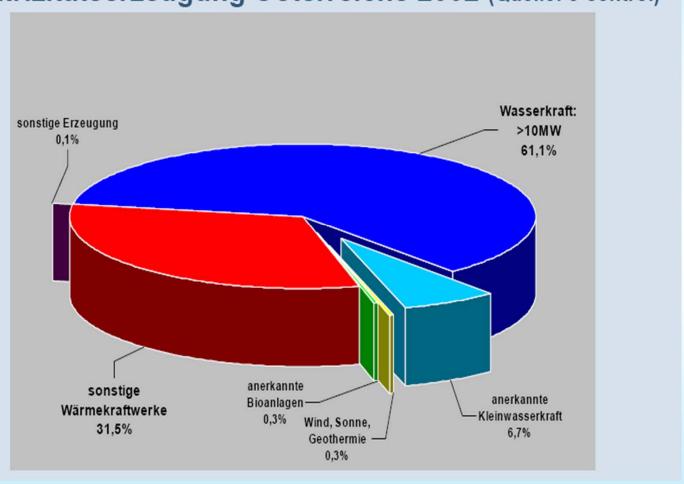
Wasserwirtschaftliche Planungsmethoden

Fallbeispiele zur Wirtschaftlichkeit eines KWKW

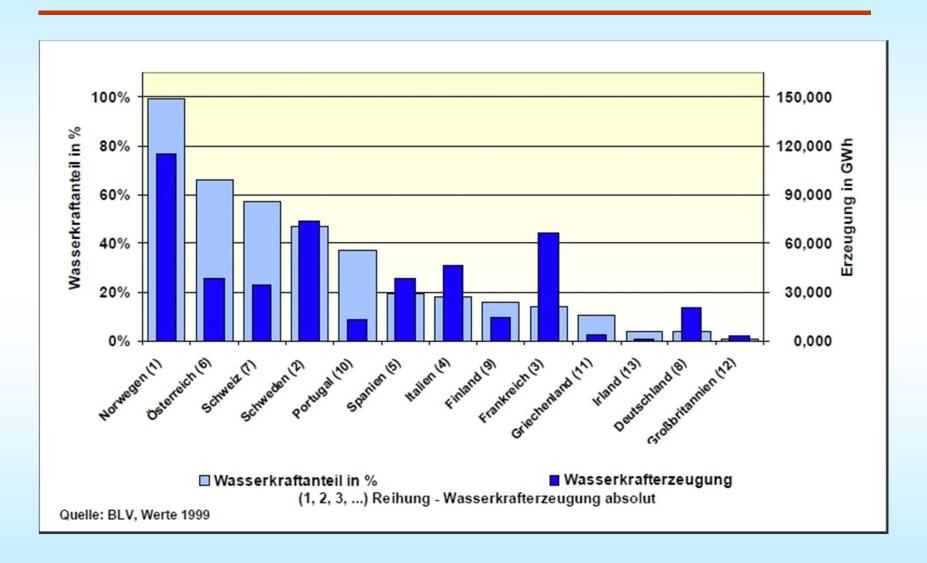
o.Univ.Prof. Dipl.Ing. Dr. H.P. Nachtnebel

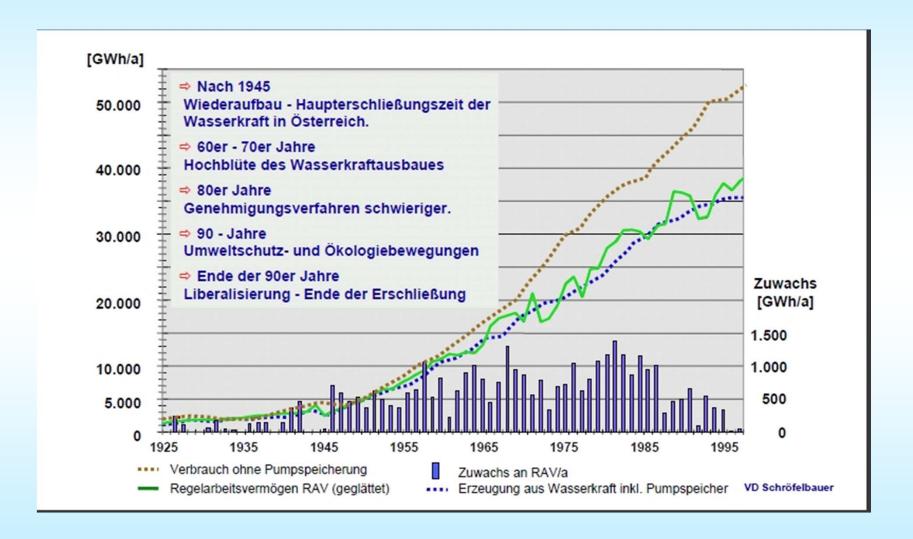
Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau

Beurteilung der Wasserkraft

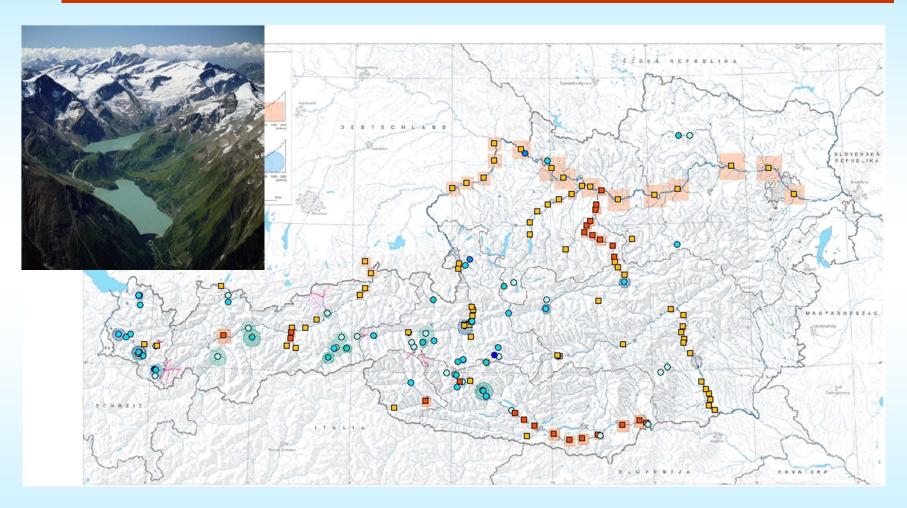

Wasserkraftnutzung ist von essentieller Bedeutung in Österreich

Die Nutzen- und Kostenstruktur der Kleinwasserkraftnutzung wird aus volkswirtschaftlicher Sicht und aus privatwirtschaftlicher Sicht erfasst.


Anteile an der Stromerzeugung



Anteil der Wasserkraft



Entwicklung der Stromerzeugung

Wasserkraftwerke in Österreich

Wasserkraftanlagen > 5 MW plus ca. 2500 Kleinanlagen

Kleinwasserkraft in Österreich

2000- 4000 Anlagen

Kleinwasserkraftwerke 2005*

Engpassleistungs- klasse in kW		mit Oko RGV		Vertragsverhältnis mit Öko-BGV per 31.12.2005		Minimumwerte 2005 (gesamt)		Maximumwerte 2005 (gesamt)		
von		bis	Anzahl	Engpass- leistung in MVV	Anzahl	Engpass- leistung in MVV	Anzahl	Engpass- leistung in MVV	Anzahl	Engpass- leistung in MW
	-	200	1.458	86,78	1.509	89,50	1.433	86,03	1.509	89,50
2	00	300	145	34,85	147	35,42	144	34,58	147	35,42
3	00	500	171	65,56	179	68,94	169	64,67	179	68,94
5	00	1.000	182	128,64	183	130,08	177	125,13	183	130,08
1.0	00	2.000	120	172,33	110	158,54	110	158,54	121	173,47
2.0	00	3.000	48	113,73	37	88,37	35	82,92	48	113,73
3.0	00	5.000	31	119,71	24	94,96	24	94,96	32	124,05
5.0	00	10.000	28	204,89	6	43,90	6	43,90	31	230,37
Summe		2.183	926,48	2.195	709,69	2.098	690,72	2.250	965,55	

^{*}Datenstand 16, März 2006

[Quelle: Egeraie-Control GmbH, Öko-RGVI

[&]quot;Geringfügige Abeichungen zu den bisher veröffentlichten Daten sind möglich

Ausbaubares Potential

Wasserkraftpotentiale Österreichs theoretisches Potential rd. 150.000 GWh ausbauwürdiges Potential (RAV) rd. 56.200 GWh (100 %) ausgebautes Potential (Bestand, RAV) rd. 35.749 GWh (67 %) ausbauwürdiges Potential (100 %) Projekte (33 %) **Bestand (67 %)** 27 % 62 % 31 % 73 % 69 % Lauf- Laufschwellkraftwerke Speicherkraftwerke Quelle: SCHILLER G. / Verbund; 1994 VD Schröfelbauer

Anteile erneuerbarer Energie

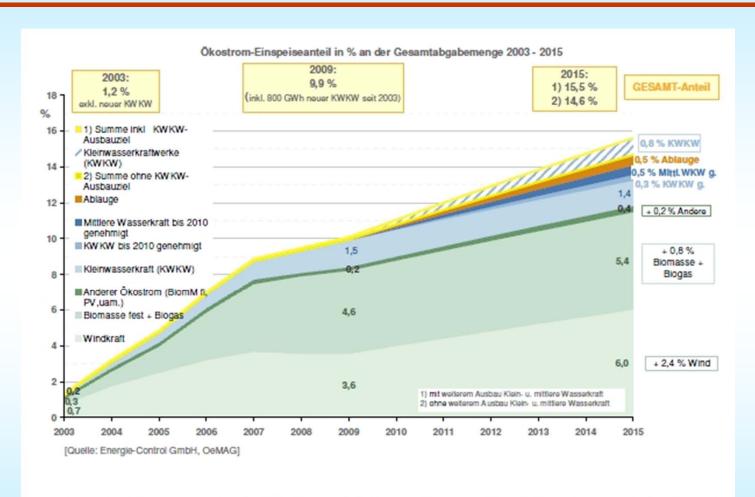
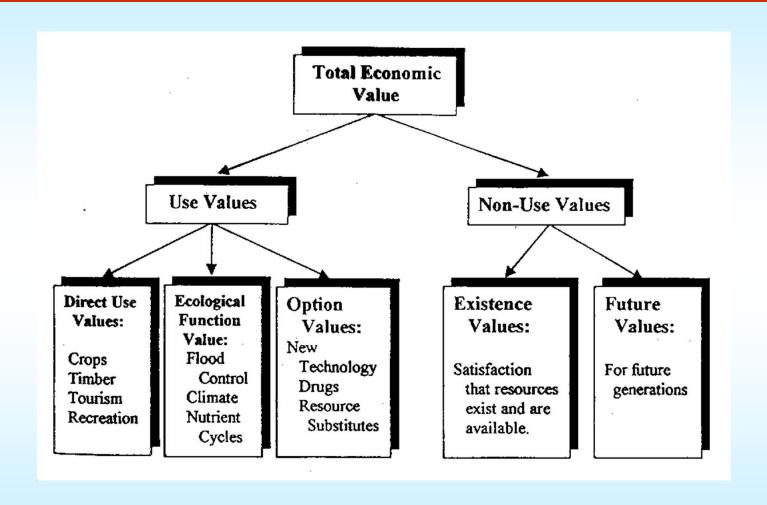
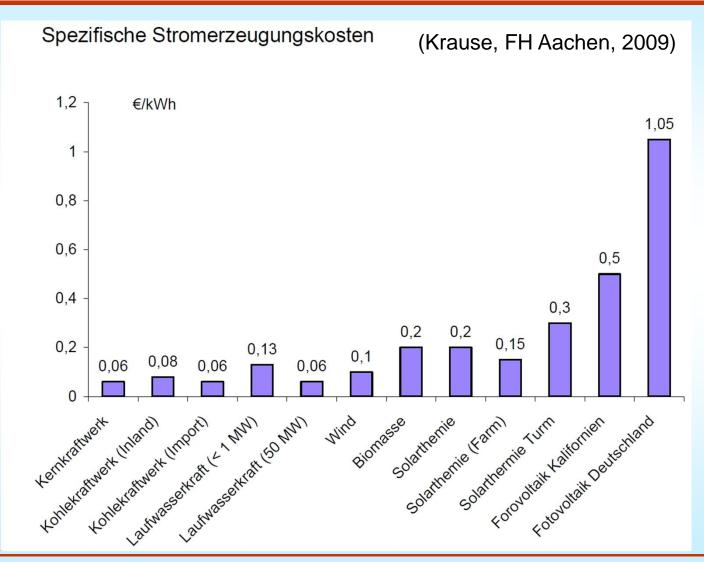


Abbildung 10: Erwartete geförderte Ökostromerzeugung nach Ökostromtechnologien bis 2015 in % des Strom-Endverbrauchs


Anteil Ökostrom

	Millionen kWh (= GWh)	%
Windkraft	1.915	3,6%
feste Biomasse	1.958	3,7%
Biogas	525	1,0%
Photovoltaik	21	0,04%
Anderer geförderter Ökostrom (Biomasse flüssig, Deponie- und Klärgas)	85	0,16%
Kleinwasserkraftausbau durch Einspeisetarife	800	1,5%
Wasserkraftausbau bis 20 MW durch Investitionszuschüsse (genehmigt)	500	0,9%
Zusätzlicher Strom aus Ablauge durch Investitionszuschüsse (genehmigt)	300	0,6%
Summe Ökostromausbau durch Ökostromgesetz	6.104	11,4%
Zum Vergleich: Gesamt-Wasserkraft inklusive Großwasserkraft (exkl. Pumpstrom)	37.310	69,8%
Gesamtabgabemenge aus öffentlichen Netzen in 2009	53.439	100,0%

Tabelle 1: Geförderte Ökostromanteile im öffentlichen Stromnetz 2009 (zuzüglich Investitionszuschuss-Genehmigungen)



Ökonomische Bewertung

Spez. Stromerzeugungskosten

Spez. Investitionskosten

Spezifische Investitionskosten wichtiger Kraftwerksarten

Kernkraftwerk	3000 €/kW
Braunkohlekraftwerk	1200 €/kW
Steinkohlekraftwerk	1100 €/kW
GuD-Kraftwerk	500 €/kW
Gasturbinen-Anlage	200 €/kW
Laufwasserkraftwerk (50 MW)	3000 €/kW
Windenergieanlage	800 €/kW
Solarthermisches Kraftwerk	4400 €/kW
Photovoltaische Anlage	6000 €/kW

Grundsätzliche Überlegungen bei KWKW

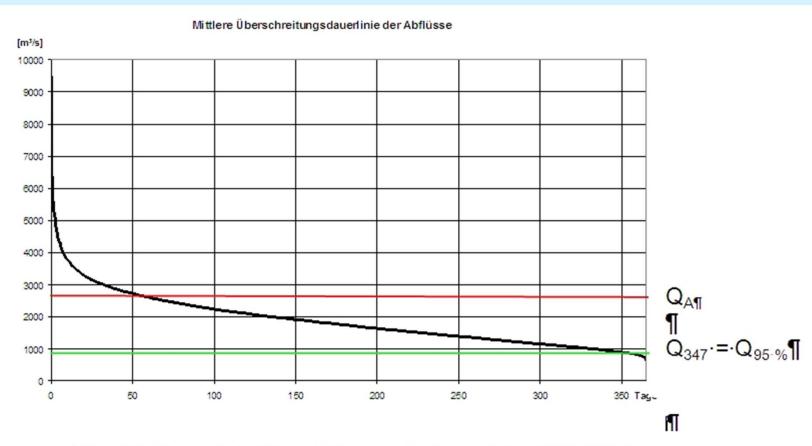


Abb.·2.5:·Dauerlinie·(Pegel·Kienstock,·Donau)·für·1971-2001⊷ Q_A·Ausbaudurchfluss·und·"garantierter·Durchfluss"·Q_{95%}·des·KW·<u>Altenwörth</u>¶

Spez. Investitionskosten

Spezifische Ausbaukosten	Kraftwerkstyp		
2.600 - 3.200 €/kW 1.400 - 1.800 €/kW 1.000 - 1.400 €/kW 5.000 - 8.500 €/kW	für Laufkraftwerke für Speicherkraftwerke für Kohlekraftwerke (Kühlturmaus- führung mit Rauchgasentschwefelung) für Photovoltaik-Anlage		

Einspeisetarife für Erneuerbare

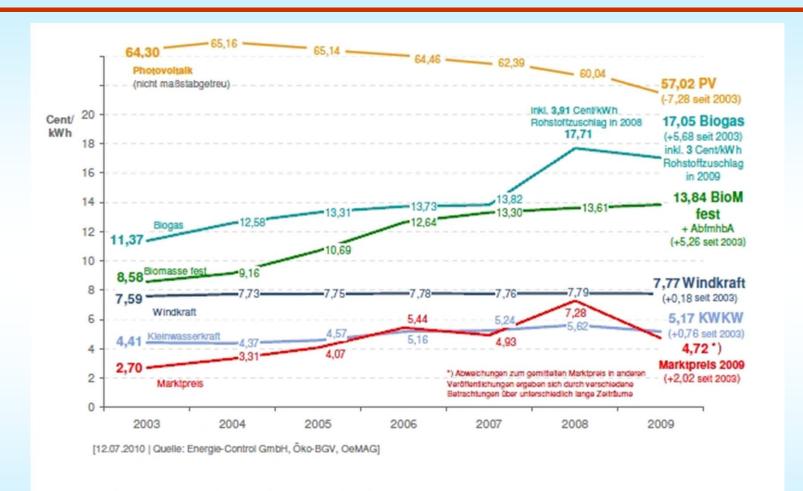


Abbildung 3: Durchschnittliche Einspeisetarife (Durchschnittsvergütung von der Ökostromabwicklungsstelle im jeweiligen Jahr bezahlt) in den Jahren 2003 - 2009

Ökonomische Bewertung

Benötigt die Definition eines Zeithorizontes
Benötigt die Definition eines Zinssatzes
Benötigt die Eingrenzung des Wirkungsraumes
unterschiedlich bei privater Investition
öffentlicher Investition

(Volkswirtschaft oder Regionalwirtschaft)

Nutzen - Kosten Struktur

- > Privatwirtschaftliche Nutzen Kostenstruktur
- Volkswirtschaftliche Nutzen Kostenstruktur

anhand von Beispielen für ein Kleinwasserkraftwerk

<u>Nutzen</u> → besteht in der Energieerzeugung

monetäre Bewertung stark abhängig von

- > Energienutzung
- > zeitliche Übereinstimmung von Erzeugung und Verbrauch

am höchsten, wenn Energie zur Deckung des Bedarfs dient

geringer, wenn Energie zur Gänze ins Netz eingespeist wird

- Tarifsystem mit Tarifperioden (saisonal und Tag)
- ▶ besondere Berücksichtigung → Regelmäßigkeit der Einlieferung
- niedrig ausgebaute Anlagen mit konstanten Einlieferungen zu bevorzugen

<u>Kosten</u> → überwiegend Investitionskosten

Investitionskosten gliedern sich in

- > die Grundstückskosten, Wasserrechtskosten
- > Aufschließungskosten an der Projektstelle
- > die Planungs- und Bauleitungskosten
- > die Transportkosten
- die Baukosten für die gesamte Anlage
- > die Kosten der elektromaschinellen Ausrüstung
- die Abgaben an öffentliche Stellen
- > die während der Bauzeit anfallenden Zinsen
- einen Kostenanteil, der zur Abdeckung unvorhergesehener Ausgaben dient

Anteile an Investitionskosten

Elektromaschinelle Anlagen	30 - 60 %
Baukosten	40 - 60 %
Planung und Management	5 - 15 %
Vorkosten, Zinsen, Gebühren	5 - 10 %

Zusätzliche Kosten, (10 - 35 %) liegen in den Installationskosten für die Energieverteilung

Produktionskosten

- Zinssatz für das investierte Kapital
- Abschreibung der Anlagenteile entsprechend ihrer Lebensdauer durchschnittliche Lebensdauern

bauliche Anlagenteile
 maschinelle Anlagenteile
 elektrische Anlagenteile
 Grundstücke
 60 Jahre
 40 Jahre
 100 Jahre

- > Gehältern für das Betriebs und Überwachungspersonal
- Reparatur- und Ersatzteilkosten
- Kosten für Verbrauchsmaterial
- > laufenden Abgaben und dem Verwaltungsaufwand

Abschätzung der jährlich anfallenden Kostenanteile

- von Investitionskosten ausgehend
- Hauptanteil (mind. 2/3) entsteht durch Kapitaldienst
- vom Zinssatz i und der Amortationsdauer T bestimmt

	T= 50 Jahre	T=25 Jahre
i = 6 %	6,3 %	7,8 %
i = 8 %	8,2 %	9,4 %
i = 10 %	10,1 %	11,0 %

Tab.:

Annuitäten in Prozent der Investitionskosten

Lohn-, Betriebs- und Reparaturkosten mit 1,5 - 2,0 % Verwaltungskosten und diverse Abgaben mit 0,5 - 1,0 %

Volkswirtschaftliche Nutzen – Kostenstruktur

Nutzen

Auf regionaler Ebene

- > Anteil der Investitionskosten, der in der Region wirksam wird
- > Anzahl der Arbeitsplätze (durch Bau und Betrieb geschaffen)
- Anzahl der Arbeitsplätze, die in der Folge, z.B. durch Errichtung kleiner Industriebetriebe entsteht
- > Anteil der Energie, der in der Region genützt wird und den Fremdbezug substituiert
- Verbesserung der Infrastruktur
- Verbesserung und Ausgleich der Einkommens- und Sozialstruktur innerhalb der Region

Volkswirtschaftliche Nutzen – Kostenstruktur

Nutzen

Auf nationaler Ebene

- Volkswirtschaftliche Multiplikatorwirkung beim KWKW-Bau
- Entlastung der Handelsbilanz durch Substitution von Energieimporten
- Steigerung der nationalen Versorgungssicherheit durch Nutzung eigener Ressourcen
- Ausgleich von zwischenregionalen Entwicklungs- und Einkommensunterschieden
- Verbesserung der Infrastruktur
- Verbesserung oder Sicherung der Umweltqualität

Volkswirtschaftliche Nutzen – Kostenstruktur

Kosten

- > die Planungskosten und andere Vorleistungen
- die Bau- und Ausrüstungskosten
- die Betriebs- und Wartungskosten
- > die Opportunitätskosten
- die Sozial- und Folgekosten
- die zugeordneten Kosten sind einzurechnen, wenn Mehrzweckprojekte durchgeführt werden

weitere Kosten durch Beeinträchtigung oder Schädigung der Umwelt → bei KWKW äußerst gering zu bewerten

Bsp.1 KWKW – Anlage mit 25 Jahren Lebensdauer; Zinssatz = 7%

Leistung [kW]	500
Spezifische Kosten [€/kW]	2.800
Investitionskosten [Mio €]	1,4
Zinssatz	7
Einnahmen [€/a]	183.000
Betriebs- u. Wartungskosten [% der Investition]	2,5
Betriebs- u. Wartungskosten [€/a]	35.000
Wiedergewinnungsfaktor (i=7 %, T=25 a)	0,0858
Barwert des Nutzens [Mio €]	2,132
Barwert der Kosten [Mio €]	1,806
Kapitalwert [€]	326.000

Bsp.1 KWKW – Anlage mit 25 Jahren Lebensdauer; Zinssatz = 7%

Leistung [kW]	500
Spezifische Kosten [€/kW]	2.800
Investitionskosten [Mio €]	1,4
Zinssatz	7
Einnahmen [€/a]	183.000
Betriebs- u. Wartungskosten [% der Investition]	2,5
Betriebs- u. Wartungskosten [€/a]	35.000
Wiedergewinnungsfaktor (i=7 %, T=25 a)	0,0858
Barwert des Nutzens [Mio €]	2,132
Barwert der Kosten [Mio €]	1,806
Kapitalwert [€]	326.000
Annuitäten (Nutzen) [€/a]	183.000
Annuitäten (Kosten) [€/a]	155.000
Nettoannuitäten [€/a]	28.000

Bsp.1 KWKW – Anlage mit 25 Jahren Lebensdauer; Zinssatz = 7%

Leistung [kW]	500
Spezifische Kosten [€/kW]	2.800
Investitionskosten [Mio €]	1,4
Zinssatz	7
Einnahmen [€/a]	183.000
Betriebs- u. Wartungskosten [% der Investition]	2,5
Betriebs- u. Wartungskosten [€/a]	35.000
Wiedergewinnungsfaktor (i=7 %, T=25 a)	0,0858
Barwert des Nutzens [Mio €]	2,132
Barwert der Kosten [Mio €]	1,806
Kapitalwert [€]	326.000
Annuitäten (Nutzen) [€/a]	183.000
Annuitäten (Kosten) [€/a]	155.000
Nettoannuitäten [€/a]	28.000
Nutzenkostenfaktor	1,18

Bsp.1 KWKW – Anlage mit 25 Jahren Lebensdauer; Zinssatz = 7%

Leistung [kW]	500
Spezifische Kosten [€/kW]	2.800
Investitionskosten [Mio €]	1,4
Zinssatz	7
Einnahmen [€/a]	183.000
Betriebs- u. Wartungskosten [% der Investition]	2,5
Betriebs- u. Wartungskosten [€/a]	35.000
Wiedergewinnungsfaktor (i=7 %, T=25 a)	0,0858
Barwert des Nutzens [Mio €]	2,132
Barwert der Kosten [Mio €]	1,806
Kapitalwert [€]	326.000
Annuitäten (Nutzen) [€/a]	183.000
Annuitäten (Kosten) [€/a]	155.000
Nettoannuitäten [€/a]	28.000
Nutzenkostenfaktor	1,18
Interner Zinsfuß (%)	9,8

→ Anlage ist wirtschaftlich

Unsicherheit

Sensitivitätsanalyse

- der zulässige Schwankungsbereich der einzelnen Einflussgrößen wird untersucht
- Man stellt Grad der Empfindlichkeit des Ergebnisses in Bezug auf die jeweilige Variable fest

Unsicherheit

Simulation

Man nimmt "wahrscheinliche Verteilungen" für Inputvariable an und analysiert die Verteilung der Outputfunktion

Unsicherheit

		Investition	Einnahmen	Betriebs-	Lebens-	Zinsfuß	Kap. Wert	Änderung
				kosten	dauer			
		[Mio €]	[€]	[€ /a]	[Jahre]	[%]	[Mio €]	[%]
Ausgangss	ituation	1,4	183.000	35.000	25	7	0,326	
Investition	10%	1,54	183.000	35.000	25	7	0,186	-42%
	-10%	1,26	183.000	35.000	25	7	0,466	42%
Einnahmen	10%	1,4	201.000	35.000	25	7	0.540	65%
	-10%	1,4	164.000	35.000	25	7	0,112	-65%
Betriebsk.	10%	1,4	183.000	38.500	25	7	0,285	-12%
	-10%	1,4	183.000	31.500	25	7	0,366	12%
Lebensd.	10%	1,4	183.000	35.000	27,5	7	0,385	18%
	-10%	1,4	183.000	35.000	22,5	7	0,213	-34%
Zinssatz	10%	1,4	183.000	35.000	25	7,7	0,221	-32%
	-10%	1,4	183.000	35.000	25	6,3	0,439	34%

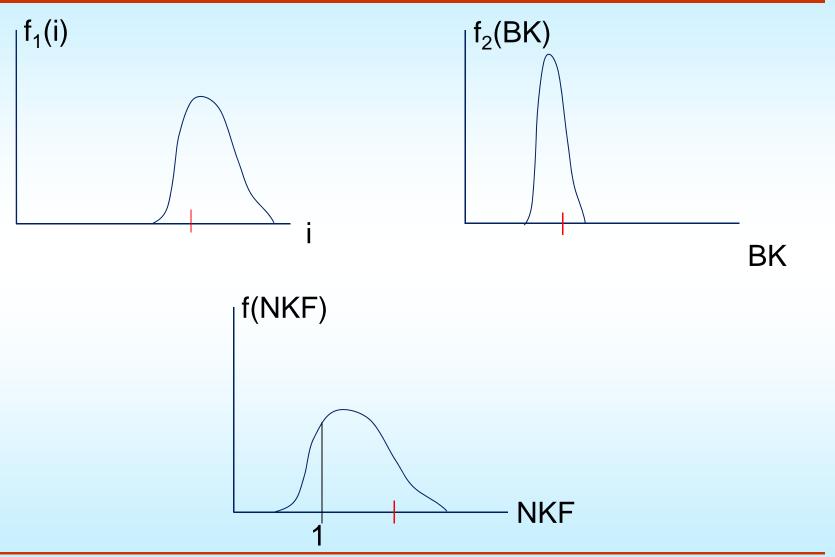
- >falsche Annahme der Einnahmen → stärkste Auswirkung auf den Kapitalwert
- >Änderung der Betriebskosten → keine allzu starken Auswirkungen
- >geringsten Einfluss übt die Lebensdauer aus

Simulation

Sämtliche Komponenten sind unsicher:

T ganz gering

i groß


Baukosten gering-mittel

Betriebskosten gering

Nutzen größer

Simulation

Bsp. 2 Vergleich zweier Ausbauvarianten

Alternative 1

Errichtung einer 500kW Anlage wie im Bsp. 1

Alternative 2 schrittweiser Ausbau durch kleinere Einheiten

- Zuerst 350 kW Anlage
- 10 Jahren durch zweites KWKW mit 200 kW ergänzt

	Alternative I	Alterna	tive II
Leistung [kW]	500	350	200
spezifische Kosten	2 800	3 100	3 600
Investitionskosten [Mio	1.4	1.08	0.72
Zinssatz [%]	7	7	7
Einnahmen [€]	183 000	145 000	95 000
Betriebs- und	35 000	25 000	10 000
Betriebsbeginn nach n	0	0	10
Lebensdauer [Jahre]	25	25	25
Barwert des Nutzens	2.13	1.69	0.44
Barwert der Kosten	1.81	1.38	0.41
Kapitalwert [€]	320 000	310 000	3 000
Annuitäten d. Nutzens	183 000	145 000	38 000
Annuitäten d. Kosten	155 000	118 000	35 000
Nutzenzuwachs [€]	2 000		
Kostenzuwachs [€]	20 000		
Nutzen-Kosten Faktor	1.18	1.19	
Nutzen-Kosten Faktor	< 1		
Interner Zinsfuß [%]	9.5	9.7	7

Optimaler Ausbau

Es ist eine Zielfunktion zu definieren z.B. maximaler Gewinn

Es sind die Entscheidungsvariablen zu definieren

z.B. Restriktion für Investition

Ausbaudurchfluss, Fallhöhe

Energieverbrauch

.

Optimaler Ausbau

Es ist eine Zielfunktion zu definieren

z.B. maximaler Gewinn

Es sind die Entscheidungsvariablen zu definieren

z.B. Restriktion für Investition

Ausbaudurchfluss, Fallhöhe

installierte Leistung

Energieverbrauch

.

Wann ist ein Optimum erreicht?

Bsp. 3 Frage nach der ökonomisch günstigsten Ausbaugröße

L	spez. K	Invest.	Betrieb	Einn.	Barwert	Differenz	Barwert	Differenz	NKF	NKF der
										Differenz
					Nutzen		Kosten			
[kW]	[€/kW]	[Mio €]	[€/a]	[€]	[Mio €]		[Mio €]			
380	3.526	1,34	35.000	200.000	2,33		1,748		1,33	
510	3.160	1,61	36.000	240.000	2,8	0,47	2,03	0,281	1,38	1,65
640	2.780	1,78	38.000	265.000	3,09	0,29	2,222	0,193	1,39	1,5
760	2.552	1,94	40.000	285.000	3,32	0,23	2,405	0,183	1,38	1,27
890	2.325	2,07	44.000	298.000	3,47	0,15	2,58	0,176	1,34	0,85

Optimum für die Dimensionierung zwischen 760 kW und 890 kW

→ Nutzen-Kosten Faktor der Zuwächse fällt unter 1

Bsp. 4 Vergleich eines Wasserkraftwerk mit einem thermischem Kraftwerk

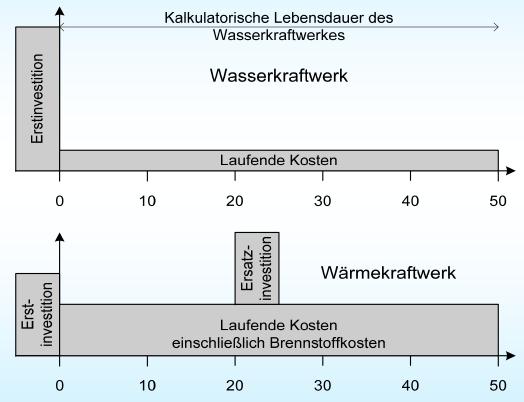


Abb.: Darstellung der Kostenströme beim kalkulatorischen Vergleich eines Wasserkraftwerkes mit einem Wärmekraftwerk

Diskontierungszinssatz

über 4,2 % das Wärmekraftwerk wirtschaftlicher unter 4,2 % ist das Wasserkraftwerk viel günstiger

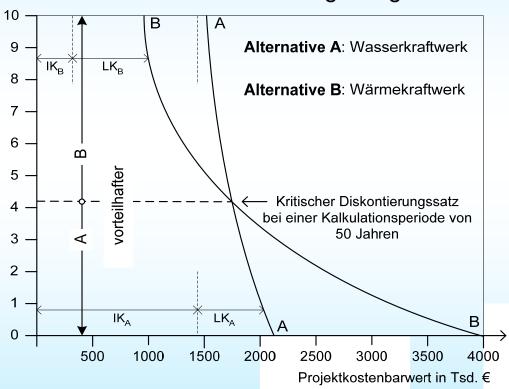


Abb.: Vergleich des Projektkostenbarwertes bei unterschiedlichem Diskontierungszinssatz

Diskontierungszinssatz

über 4,2 % das Wärmekraftwerk wirtschaftlicher unter 4,2 % ist das Wasserkraftwerk viel günstiger

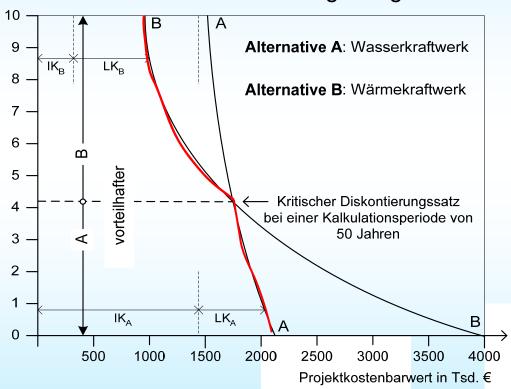


Abb.: Vergleich des Projektkostenbarwertes bei unterschiedlichem Diskontierungszinssatz

Hängt von der Art des Betriebes ab (Eigenverbrauch und/oder Einspeisung)

Hängt vom Automatisierungsgrad ab

Hängt vom Ausbaugrad ab. KWKW sind meist niedrig ausgebaut

Zusammenfassung

- Beurteilung eines KWKW nach wirtschaftlichen Kriterien
- Vss.: T und i
- Ermittlung der Nutzen- und Kostenreihen
- Bezug auf einen einheitlichen Bezugspunkt
- Auswahl eines Kriteriums
- Berücksichtigung der Unsicherheiten Sensitivität interner Zinssatz
 Simulation

Gesamtenergieverbrauch

Energleverb	rauch und Ö	kostromerze	eugung 2008	
		PJ	% des Endenergieverbrauchs	TWh
Bruttoenergieverbrauch		1428 (1440)		
Verluste und stoffliche Nutzung		340		
Endenergieverbrauch		1100	100%	
Stromverbrauch gesamt		255	23%	70,9
Stromverbrauch Eigenversorgung		56	5%	
Stromverbrauch öff. Netz	199	18%	55,4	
Stromerzeugung aus Wasserkraft (exklusive Pumpstrom)		146	13%	40,6
Geförderter Ökostrom (exklusive Kleinwasserkraft)		16	1,5%	4,5
davon:	Windkraft	7,2	0,7%	2
	Biomasse fest	6,8	0,6%	1,9
	Biogas	1,8	0,2%	0,5
	Photovoltaik	0,06	0,01%	0,017
	Andere	0,3	0,03%	0,09
Restliches Öffentliches Stromnetz		37	3%	

[Quelle: Energie-Control GmbH]

Erneuerbare Stromerzeugung

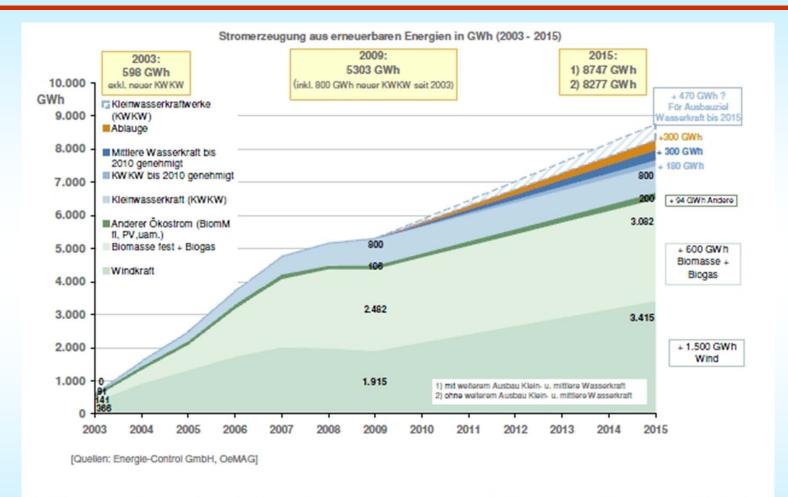


Abbildung 9: Erwartete geförderte Ökostromerzeugung nach Ökostromtechnologien bis 2015 in GWh

