Wasserwirtschaftliche Planungsmethoden

2. Wirtschaftlichkeitsanalysen

o.Univ.Prof. Dipl.Ing. Dr. H.P. Nachtnebel

Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau

Definition der Wirtschaftlichkeit

Wirtschaftlichkeit beschreibt das Verhältnis zwischen Kosten und Leistung bzw. Aufwand und Ertrag

Ein Projekt ist wirtschaftlich, wenn

 der erbrachte Nutzen die verursachten Kosten übersteigt

Der Zeithorizont

Lebensdauern

Technische Lebensdauer

Ist dann erreicht, wenn die Anlage physikalisch oder technisch die Anforderungen nicht mehr erfüllen kann

Wirtschaftliche Lebensdauer

Ist dann erreicht, wenn die Kosten des weiteren Betriebes den Nutzen überwiegen

Der Zeithorizont

Kalkulatorische Lebensdauer

Umfasst den Planungshorizont

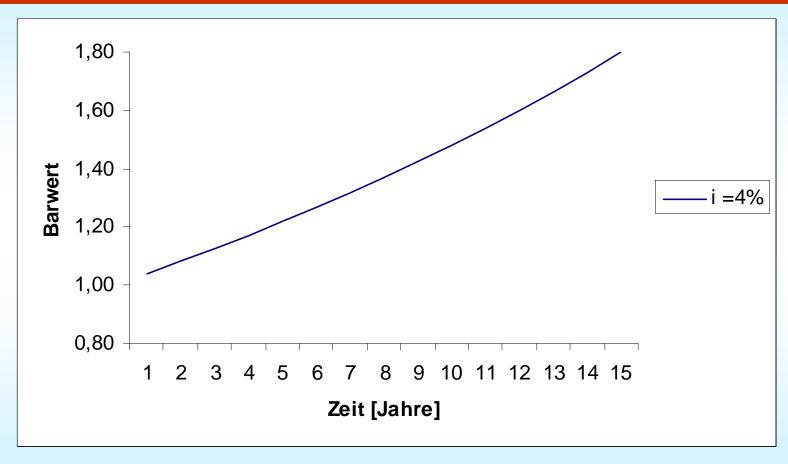
Ausbauhorizont

Ist dann erreicht, wenn z.B. Bedarfssteigerung nicht mehr möglich ist. Meist ident mit dem Planungshorizont

Amortisationsdauer

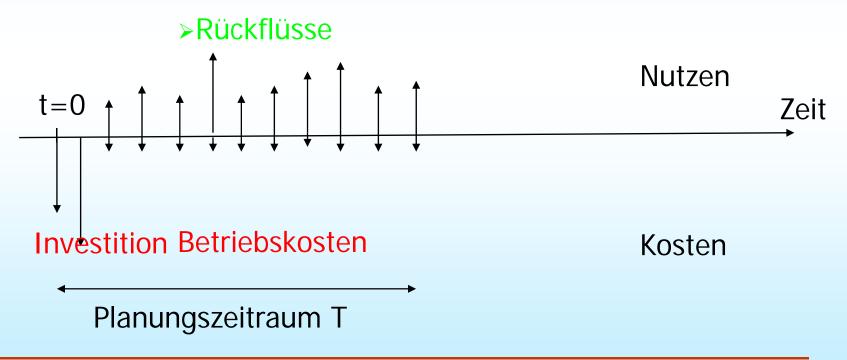
Ist dann erreicht, wenn die Summe der Nutzen gleich ist wie die bisherigen Kosten

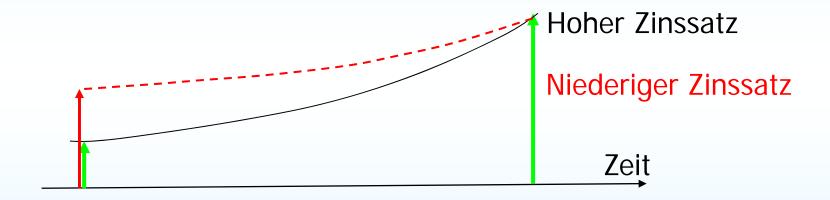
Zinssatz


Wichtig für die monetäre Bewertung ist

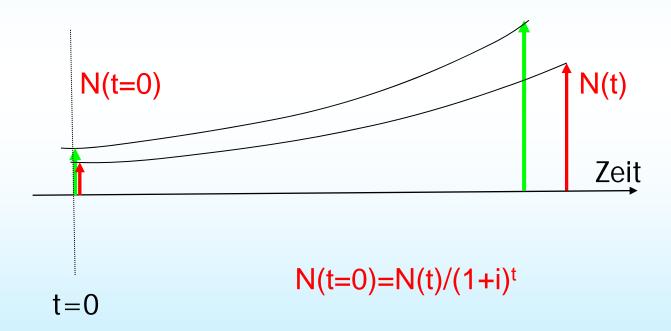
- die Lebensdauer des Projektes sowie
- die Wahl des inflationsbereinigten Zinssatzes
- Nomineller Zinssatz und realer Zinssatz

Ende der 80er Jahre Zinssatz 3 % mittlerweile Zinssatz von ungefähr 2 %

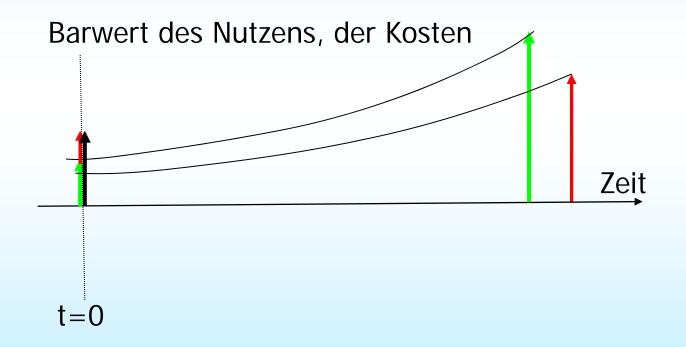

Zinssatz

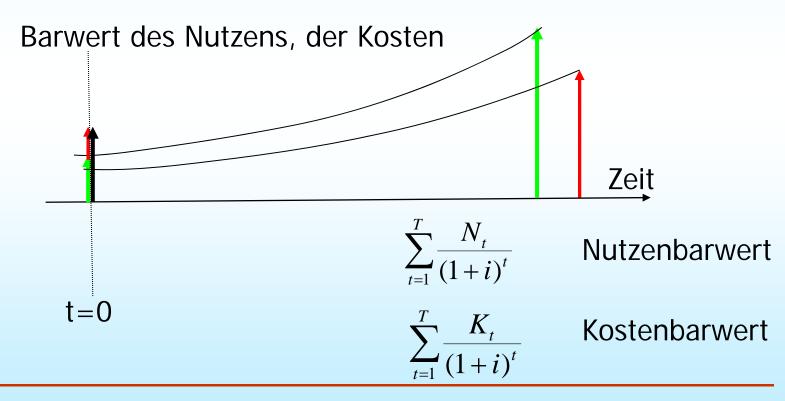

Auswirkungen des Zinssatzes

Nutzen- und Kostenreihen


$$X(t=0) = \frac{X(t=n)}{(1+i)^n}$$

- Alle Ein-, Auszahlungen sind auf den gleichen Bezugspunkt zu beziehen
- Die Beurteilung ist unabhängig vom Bezugspunkt
- Die Beurteilung ist (weitestgehend) unabhängig vom Beurteilungskriterium


Jede einzelne Zahlung (Ein-Auszahlung) ist getrennt zu diskontieren


Discounting

Die diskontierten Größen sind zu akkumulieren

Discounting

wesentliche Begründung für Diskontierung

"Nach dem Gesetz der Gegenwartspräferenz wird ein Güterbündel heute einem Güterbündel in der Zukunft vorgezogen.

Folglich muss der Nutzen zukünftiger Generationen 'abdiskontiert' werden" (Siebert, 1978)

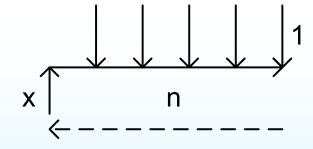
Diskontierung ist ein Verfahren der Zinsrechnung

- aus gegebenen Endbetrag
- oder uniformen Zahlungsreihen
- bei vorgegebener Laufzeit und Verzinsung wird der Barwert ermittelt

Je höher der Zinssatz ist, desto geringer ist der Barwert

Berechnung des Diskontierungsfaktor:

einmalige Zahlung der Größe 1 in n Jahren mit Zinssatz i


$$X = \frac{1}{\left(1+i\right)^n}$$

uniforme jährliche Zahlungsreihe über n Jahre mit Zinssatz i und einer Zahlung der Größe 1

$$X = \frac{(1+i)^n - 1}{i \cdot (1+i)^n}$$

Zahlungsstrom bei Wasserkraftwerken

Volkswirtschaftliche Effizienzmaße

Nutzen-Kosten Verhältnis NKF (Faktor) oder BCR

$$\frac{\sum_{t=0}^{T} \frac{N_{t}}{(1+i)^{t}}}{\sum_{t=0}^{T} \frac{K_{t}}{(1+i)^{t}}} = BCR > 1$$

Kapitalwert KW oder NPV

$$\sum_{t=0}^{T} \frac{N_{t}}{(1+i)^{t}} - \frac{K_{t}}{(1+i)^{t}} = NPV > 0$$

Interner Zinssatz r

$$\sum_{t=0}^{T} \frac{N_{t} - K_{t}}{(1+r)^{t}} = 0 _{for_{r} > i}$$

Volkswirtschaftliche Effizienzmaße

Amortisationsdauer

$$\sum_{t=1}^{X} \frac{N_t}{(1+i)^t} = \sum_{t=1}^{X} \frac{K_t}{(1+i)^t}$$

- Jener Zeitraum X, in dem der Nutzen den bisher aufgewandten Kosten gleicht
- Auf Grund der langen Lebensdauer von wasserwirtschaftlichen Projekten eher untergeordnete Bedeutung

Kosten-Nutzen Analyse

- sind Entscheidungshilfen ob bestimmte öffentliche Projekte unter gesamtwirtschaftlichen Gesichtspunkten sinnvoll sind
- sind gesetzlich vorgeschrieben
- Ziel ist es die Wirtschaftlichkeit von Großprojekten zu prüfen

drei Ansätze

- > Inputorientiert
- Nachfrageorientiert
- Marktorientiert

Inputorientierte Verfahren

Basieren auf Vermeidungskostenansätzen, Alternativkosten bzw. auf Inputkosten des öffentlichen Gutes

Nachfrageorientierte Verfahren

Setzen die Kenntnis einer Nachfragefunktion, die Kenntnis der Zahlungsbereitschaft der Einzelnen voraus

Marktorientierte Ansätze

Verwendet für die Festlegung des Nutzens und der Kosten Marktpreise, wobei die Erfassung der Marktpreise infolge nicht existenter "vollkommener Märkte" erschwert wird.

zentrales Problem bei der Monetarisierung

 da oft keine Marktpreise der relevanten Güter existieren

daher erfolgt Bewertung von Marktpreisen theoretisch

für direkte und indirekte Nutzenkomponenten

Nach Konzept der Zahlungsbereitschaft ("willingness-to-pay")

für indirekte Kosten

werden als Prohibitivkosten ("willingness-to-accept") bewertet

für direkte Kosten

wirtschaftliche Opportunitätskosten als Bewertungsgrundlage verwendet

Auszug aus den Richtlinien des BMLFUW

für die Durchführung von Kosten-Nutzen-Untersuchungen im Flussbau

Gesetzliche Grundlage

Gesetzliche Grundlage für Kosten-Nutzen Untersuchungen bildet 2 Abs. 2 Ziffer 3 des Wasserbautenförderungsgesetzes,

Anwendungsbereich

KNA sind vorzunehmen

- > wenn voraussichtliche Gesamtbausumme eines Vorhabens 1,82 Mio. € erreicht oder übersteigt
- wenn unabhängig von der Gesamtbausumme volkswirtschaftlich weitreichende Auswirkungen auftreten

auf KNA kann nach Maßgabe der Zweckmäßigkeit verzichtet werden bei

- Sofortmaßnahmen nach Hochwasserereignissen (1a Ziffer 15 WbFG)
- Schutz- und Regulierungsbauten an Grenzgewässern (6 Abs. WbFG)
- Projekten, wenn diese in der Kosten-Nutzen-Untersuchung des zugehörigen generellen Projektes miterfasst sind und mit dessen Zielsetzungen im Wesentlichen übereinstimmen

Allgemeiner Überblick über die Kosten-Nutzen-Untersuchung

- > in Form einer Kosten-Nutzen-Analyse durchgeführt
- > dient zur Beurteilung der Wirtschaftlichkeit eines Vorhabens
- als Bewertungsgrößen werden Kosten und Nutzen einander gegenübergestellt
- diese werden auf einen bestimmten Zeitpunkt (Bezugszeitpunkt) diskontierten bzw. akkumulierten und monetär bewertet
- man unterscheidet zwischen direkten, indirekten und intangiblen Kosten bzw. Nutzen

Kosten

Direkte Kosten

bei der Kostenermittlung werden nachstehenden direkten Kosten

- > Projektierungskosten
- Baukosten
- Instandhaltungskosten
- > Betriebskosten

in Rechnung gestellt

jährlich anfallende Instandhaltungs- und Betriebskosten werden mit 0,5 %, 1,0% oder 1,5% der Baukosten angenommen

indirekte Kosten

in der KNA zu erfassenden indirekten Kosten sind

- Ablösen
- > Entschädigungen
- > Ersatzmaßnahmen

intangible Kosten

diese Größen gehen in die KNA nur in beschreibender Form ein

> z.B. Beeinträchtigung der Landschaft, historischer Bauwerke

Nutzen

direkte Nutzen → positiven Auswirkungen, um deren Willen das Projekt durchgeführt wird

durch Schadensminderungen

- > bei Anlagen im Gewässer und am Gewässerbett
- > im Bereich baulich genutzter Flächen
- > im Bereich land- und forstwirtschaftlich genutzter Flächen
- > an Verkehrs- und Versorgungsanlagen
- > an Objekten
- > im Fremdenverkehr
- > in Gewerbe und Industrie

direkte Nutzen

durch Wertsteigerung

- > Bodenwertsteigerung infolge induzierter Bodennutzungsänderung
- Einsparungen bei künftigen Vorhaben infolge Verhinderung oder Wegfall der Hochwassergefährdung

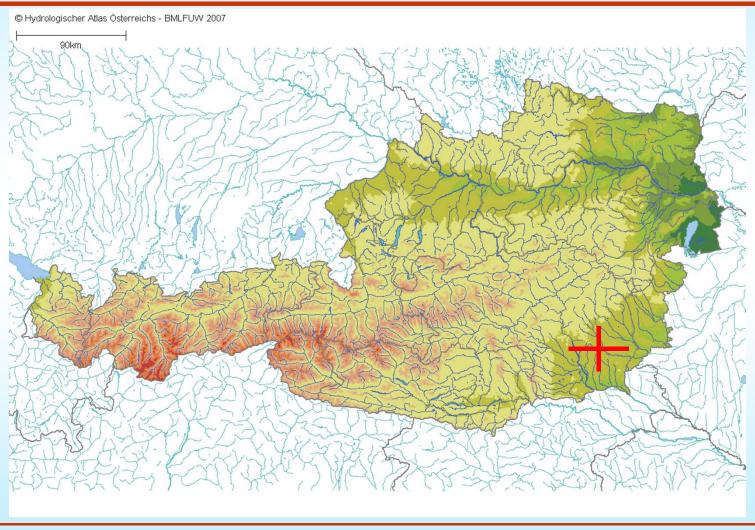
indirekte Nutzen

Unter indirekten Nutzen versteht man jene Vorteile, die Drittenentstehen, die nicht direkt am Projekt beteiligt sind

intangible Nutzen

In Geldgrößen nicht bewertbare Auswirkungen →in beschreibender Form in KNA

Gefährdung bzw. Verlust von Menschenleben, Bereicherung der Landschaft, Erholungswirkung


Typologie von HW-Schäden

(Messner et al. 2006, Penning-Rowsell et al. 2003, Smith and Ward 1998)

		Messgrößen	
		Tangibel	Intangibel
Form of damage	Direct	Schaden an Objekten Gebäude Inhalte (Ausstattung) Infrastruktur	Verlust an Menschenleben Gesundheitliche Schäden Ökologische Schäden
	Indirect	Produktionsverluste Erhöhter Transport (Behinderungen) Aufräumungsarbeiten	Behinderungen durch Aufräumarbeiten Beeinträchtigung der Bevölkerung (Wahrnehmung)

Fallstudie Hochwasserschutz Gleisdorf

Aufgabenstellung

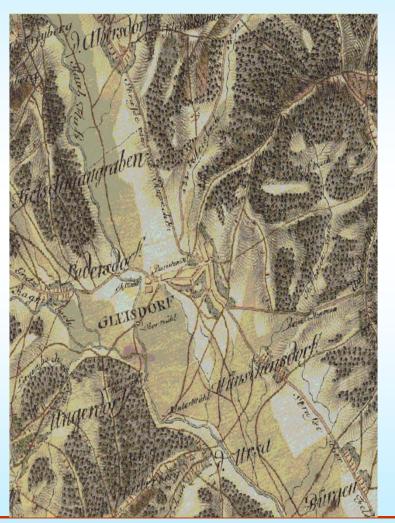
Teile der Stadt Gleisdorf waren von Hochwässern gefährdet Mitte der 1990-iger Jahre wurde ein Schutzprojekt ausgearbeitet

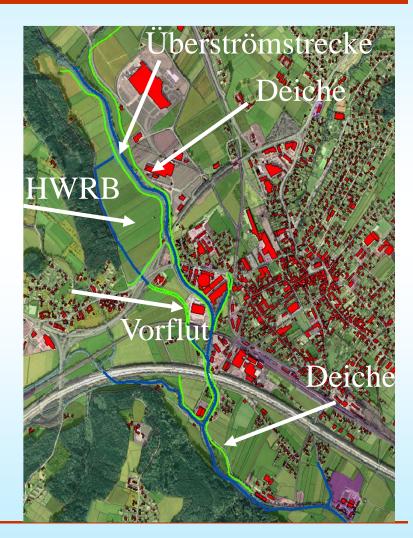
Ende der 1990-iger Jahre wurde es in Form eines Beckens (Nebenschluss) und Deichen realisiert

Danach setzte eine intensive Nutzung des ehemaligen Überflutungsraumes ein

Was kann passieren?

Wie entwickelte sich das Risiko?




Entwicklung

Josephinische Landesaufnahme 1787

GIS Steiermark, http://www.gis.steiermark.at/ 07 - 2005

Hochwasserschutzprojekt 97-99

Schadensermittlung

Szenarienentwicklung (HQ30, HQ100, HQ300,...)

Ermittlung des gefährdeten Gebietes

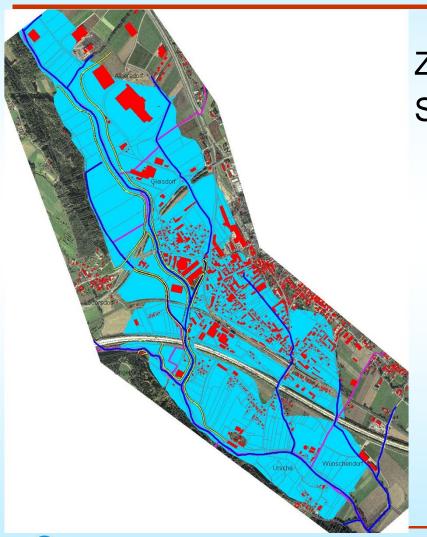
Identifikation gefährdeter Objekte

Klassifikation der Objekte

Folgeschäden

Spez. Kosten

Ermittlung des Schadenspotentiales


Ermittlung des Risikos

Information-Kommunikation

Risikomanagement

Hochwasserschutzprojekt 1999

Ziel HQ₁₀₀- Schutz Schutz von 233 Objekten und 130 ha Fläche

Raab: $Q_{max} = 200 \text{ m}^3/\text{s}$

Rabnitz: $Q_{max} = 40 \text{ m}^3/\text{s}$

Eintrittswahrscheinlichkeit:

Ca. 1/100 pro Jahr

Entwicklung in den letzten Jahren

Nach Realisierung des HW-Schutzes intensive Entwicklung im Talraum

Ansiedelung von einigen Industriebetrieben

Tal wird durch Fußgängerbrücke, Landes-, Bundesstrasse, Autobahn und Bahn gequert

Szenarien

Wie wäre es ohne HW-Schutz?

Wie ist es heute?

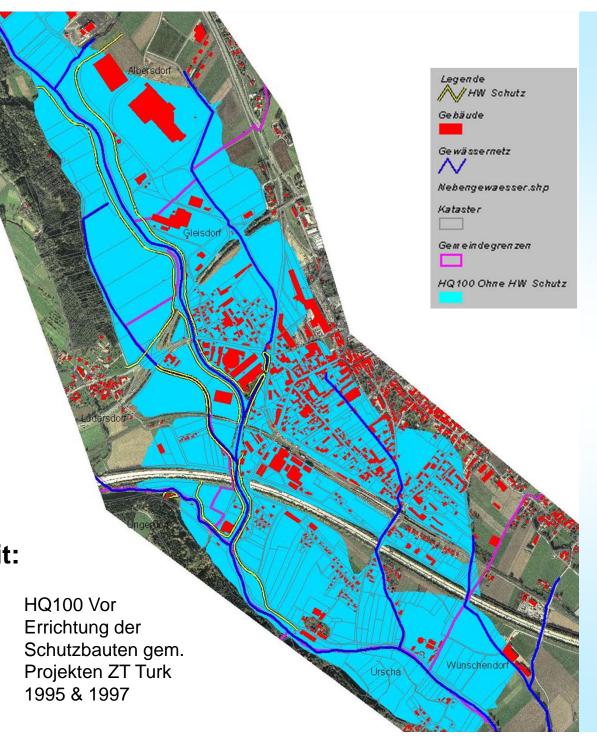
Verklausung der Brücke

HQ₃₀₀ Auftrittswahrscheinlichkeit in einem Jahr 1/300

HQ₁₀₀₀ Auftrittswahrscheinlichkeit in einem Jahr 1/1000

HQ₅₀₀₀ (vergleichbar Kamphochwasser 2002)

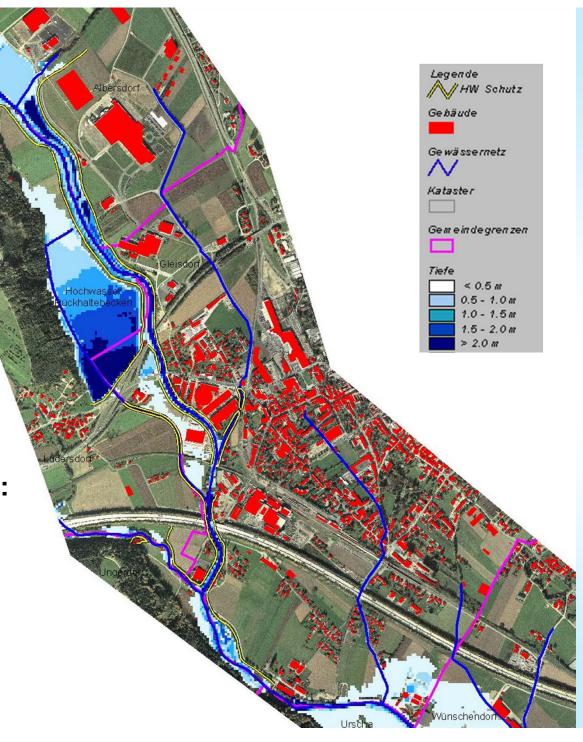
Überflutungsbereiche, Vor Errichtung des HW Schutzes


Raab: $Q_{max} = 200 \text{ m}^3/\text{s}$

Rabnitz: $Q_{max} = 40 \text{ m}^3/\text{s}$

Eintrittswahrscheinlichkeit:

Ca. 1/100 pro Jahr

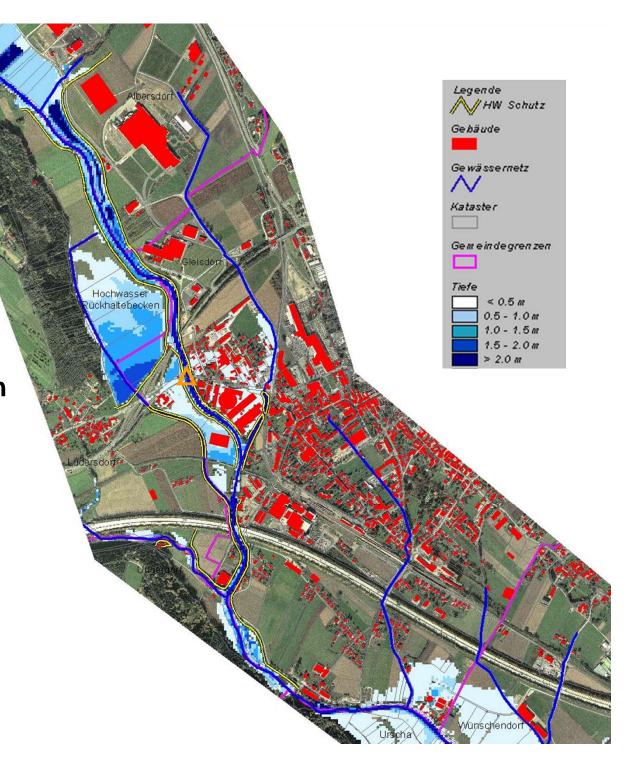

Überflutungsbereiche, Tiefen

Raab: $Q_{max} = 200 \text{ m}^3/\text{s}$

Rabnitz: $Q_{max} = 40 \text{ m}^3/\text{s}$

Eintrittswahrscheinlichkeit:

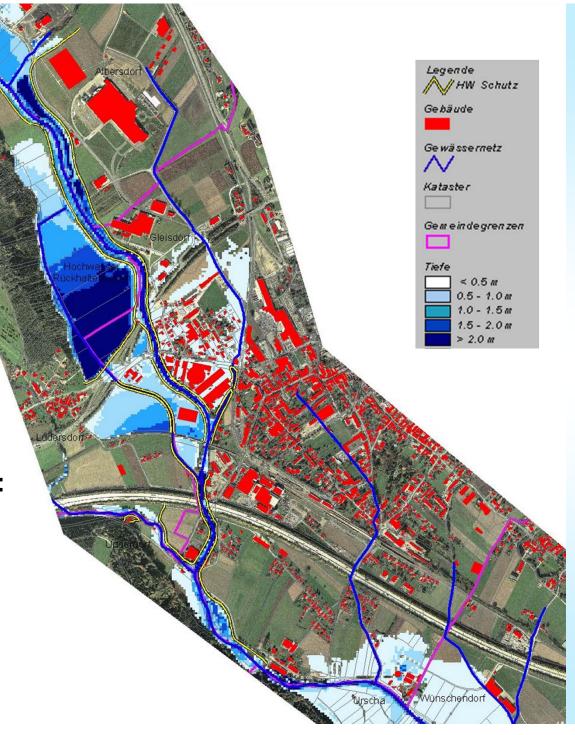
Ca. 1/100 pro Jahr



Überflutungsbereiche, Tiefen

Verklausung der Brücken

Bemessungsabfluss

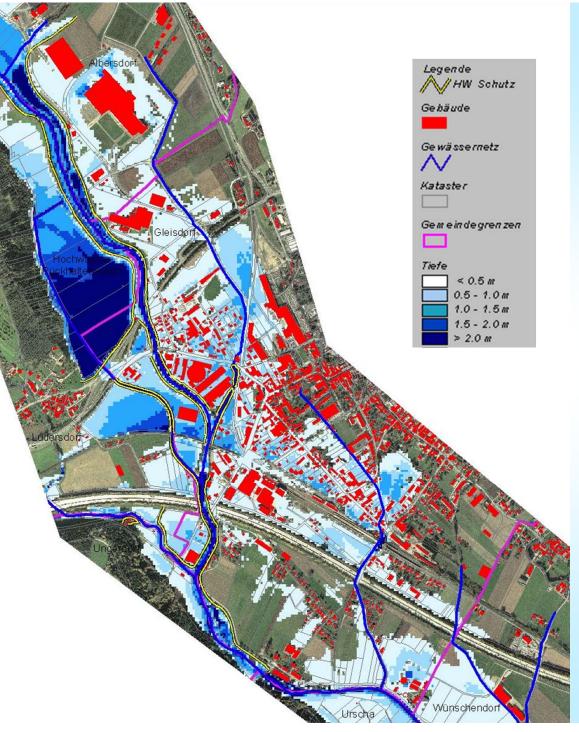


Überflutungsbereiche, **Tiefen**

Raab: $Q_{max} = 245 \text{ m}^3/\text{s}$ Rabnitz: $Q_{max} = 56 \text{ m}^3/\text{s}$

Eintrittswahrscheinlichkeit:

Ca. 1/300 pro Jahr

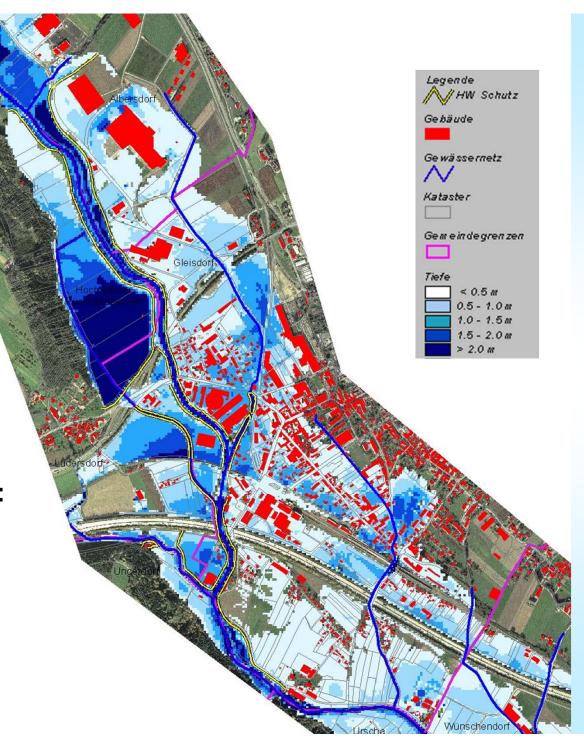


Überflutungsbereiche, Tiefen

Raab: $Q_{max} = 310 \text{ m}^3/\text{s}$ Rabnitz: $Q_{max} = 82 \text{ m}^3/\text{s}$

Eintrittswahrscheinlichkeit:

Ca. 1/1000 pro Jahr



Überflutungsbereiche, Tiefen

Raab: $Q_{max} = 400 \text{ m}^3/\text{s}$ Rabnitz: $Q_{max} = 97 \text{ m}^3/\text{s}$

Eintrittswahrscheinlichkeit: Ca. 1/5000 pro Jahr

Schätzung der möglichen Schäden

Am Objekt (Bausubstanz, Infrastruktur...) Am Inhalt (Einrichtung, Ausstattung...) Folgeschäden

Schadensarten Betriebe

Sachschäden

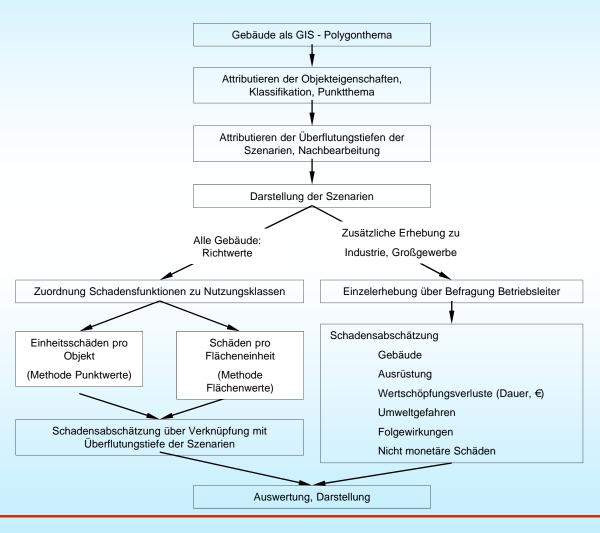
Gebäude, Heizung, Strom...

Fahrzeuge

Waren, Produkte, Lagerbestände

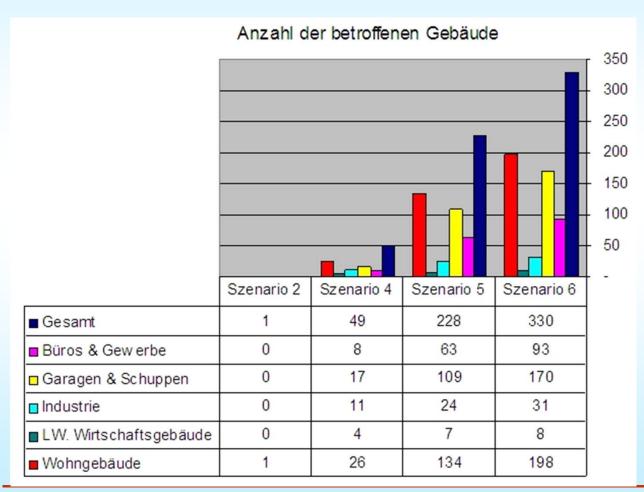
Betriebseinrichtungen, EDV...

Wertschöpfungsverlust durch Betriebsunterbrechung:


Einbussen in Umsatz und Gewinn

Standortnachteile

Umwelteinwirkungen



Schadenspotentiale

Verknüpfung von Hydraulik, Gelände und Landnutzung

Schadenspotentiale

Berechnung mit Richtwerten

- Methode nach BUWAL (1999) & BWG (2002)
- Umgerechnet & diskontiert f. Österreich, 2004
- Schäden in €/ Gebäude & Schäden in €/ m²

Tabelle 9.5: Schadensfunktionen in €

Klasse gemäß BUWAL (1999) & BWG (2002)	Schwache Intensität: Tiefe ≤ 0,5 m		Mittlere Intensität: Tiefe > 0,5 m	
	a) Pro Geb.	b) Pro m²	a) Pro Geb.	b) Pro m²
Ein- & Zweifamilienhaus	8.402	90	44.810	532
Mehrfamilienhaus	11.202	106	50.411	588
Gewerbegebäude	28.006	308	140.031	1.400
Industriegebäude	33.607	375	196.043	1.960
Stall	2.801	62	22.405	294
Schuppen / Remise	1.120	11	8.402	115

Schadenspotentiale Gewerbe & Industrie:

Schadensarten

- Sachschäden
- Wertschöpfungsverluste
- Wettbewerbsnachteile
- Folgeschäden
- ...

Erhebung vor Ort

- Information (Präsentation und Informationsmaterial)
- Kontaktnahme
- gemeinsame Begehung am Firmengelände
- Schadensangaben...

Erhebung Schadenspotentiale

Fragebogen

1. Was kann betroffen sein?

Einwirkungen	Mögliche Einwirkungen bitte ankreuzen & ausfüllen	
Überflutung, Beschädigung von	Büros	
	Lagerflächen	
	Produktionsflächen, Produktionseinrichtungen	
	Verkaufsflächen	
	Heizung	
	Klimaanlage, Lüftung, Strom	
	Fahrzeugen	
Freisetzung von	ÖI	
	Chemischen Substanzen	
Weitere Folgewirkungen		

Schadensart	Hilfsgrößen		Schäden [€]
Gebäude	Wert (Versicherungssumme etc.) W _G		
	Schadensgrad S _G		
	Z.B. W _G * S _G		
Einrichtung, Anlagen, Betriebsmittel	Wert (Versicherungssumme etc.) W _E		
	Schadensgrad S_E		
	Z.B. W _E * S _E		
Reinigung, Kontrolle, Instandsetzung, Austausch			
Weitere Schadenskosten			
Wertschöpfungs- Verluste	Geschätzte Dauer Betriebsunterbrechung		
	Umsatz (s. Bilanz) in Unterbrechungsdauer		
	Gewinn (s. Bilanz) in Unterbrechungsdauer		
	Alternativ		
Summe der Scha	denskosten		

2. Beschreibung in Geldeinheiten

Gibt es Möglichkeiten zur Verbesserung? Bitte ankreuzen.

3. Vorsorge

Ja	Nein	Thema nicht relevant

Schadenspotentiale Gewerbe & Industrie:

10 kontaktierte Unternehmen

- Größte 4 Firmen:
 - Interesse der Betriebe & deren Versicherung Eine Firma: Interner technischer Schutz Konzerne z.T.versichert: Elementar & Betr.stillstand
- Thematik z.T. höchst sensibel (Image bei Kunden)
- Schäden ex-ante kaum bezifferbar
- Erfahrungen z.t. als HW Geschädigte
- Gewünschte Angaben können / wollen nicht abgeschätzt / weitergegeben werden.

ZUSAMMENFASSUNG

- Entwicklung eines Instrumentariums zum Vergleich von Zahlungen zu unterschiedlichen Zeitpunkten
- Darstellung von verschiedenen Effizienzmaßen (Barwert, Kapitalwert, Annuitäten, Nutzen-Kostenfaktor, interner Zinsfuß)
- Darstellung eines Beispieles aus dem Bereich Hochwasserschutz
- Gliederung der Nutzen/Kosten in direkte, indirekte, intangible Anteile

